FRICTIONAL FORCES

- Frictional force (Force of friction) is produced when 2 surfaces of bodies are in contact.
- Frictional forces:
*) Static frictional force
*) Kinetic frictional force
- Frictional force is directly proportional to the normal force:

$$
\begin{gathered}
\boldsymbol{f}_{\boldsymbol{s} \propto \mathbf{N}} \\
\boldsymbol{f}_{\boldsymbol{s}}=\mu_{s} \mathbf{N}
\end{gathered}
$$

1. A block of mass m resting on a table

The weight of the block: $\quad W=m . g$
The normal force : $N=W$
Static frictional force: $\quad f_{s}=0$
Pada kondisi seperti ini, tidak terdapat gaya gesek.
2. A block of mass m is applied with a small horizontal force

- f_{s} may increase in line with the force F.
- So, f_{s} is called "Self-adjusting force".

3. A block of mass m just start to move when applied with a small horizontal force.

- If f_{s} reach maximum value.
- The block just start to move.

4. A block of mass m is moving with constant velocity when applied with a horizontal force.

- The block is moving with a constant velocity of v
- $\boldsymbol{f}_{k}=\mu_{k} \mathbf{N}$

Figure 4.9. Forces acting on a block of mass M on an inclined plane.

$$
f_{s}=W \sin \theta
$$

$$
f_{s}=\mu s \mathbf{N} \rightarrow \mathbf{N}=\mathrm{W} \cos \theta
$$

$$
\mu_{s}=W \sin \theta: W \cos \theta
$$

$$
=\sin \theta: \cos \theta
$$

$$
\mu_{\boldsymbol{s}=}=\operatorname{tg} \theta
$$

