Chapter 4: Semiconductor Physics

Crystal structures of solids
Energy band structures of solids

Charge carriers in semiconductors

Carrier transport
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Equilibrium Distribution of Electrons and Holes

The densities of electrons and holes are related to the density-of-states
function and the Fermi distribution function.

n(E)=g.(E)f:(E)

p(E)=g,(E)1- f-(E)]

The total electron/hole concentration per unit volume is found by integrating
the corresponding function over the entire conduction/valence band energy.

We need to determine the Fermi energy in order to find the thermal-
equilibrium electron and hole concentrations.

We first consider an intrinsic semiconductor. An ideal intrinsic
semiconductor is pure semiconductor without impurities or lattice defects. At
T =0 K, all the energy states in the valence band are filled with electrons and
all the energy states in the conduction band are empty. The Fermi energy
must be somewhere between E_and E,. At T > 0 K, the number of electrons
In the conduction band is equal to that of holes in the valence band.
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Equilibrium Distribution of Electrons and Holes

8c (E) fr (E)=n(E)

area = n, =

electron “ 2
concentration g, (E) _ 4r (2:; P ) \/ EV —E

woarm-ne | 1T My =My, the Fermi energy Is at

e o : the midgap energy. If m“= m", the
7 //////(K Fermi level for an intrinsic

/’ area = po= semiconductor will slightly shift

/// % e away from the midgap energy.
, 2

&)=l fr(E) =1
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The n, and p, Equations

Ny = _[ gc(E)fF (E)dE

Because the Fermi distribution rapidly approaches zero with increasing

energy, therefore 0
n, = [. 0. ()1, (ENE

c

If (E.—Ef) >> KT, then (E-E) >> KT, so that

[_(E - EF )]

KT

1
f.(E)= =~ exp
1+exp (E kTEF)

*

3/2
N, = j; 472(2th) JE-E, exp[_(Ek; = )}dE

E-E

C

KT
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If we let n=



ex
: h? KT U

0

Then x — \3/2
n. — 47[(2mnkT) exp{_(EC —E¢ )}j‘w 1/2 (_77)(177

The integral i1s a gamma function.

[ 7" exp(-n)dn =~z

2
2:mKT ) (E.-E.)
So N, =2 ﬂmg exp[_ c_ F}
h KT

We define a parameter N, as

272m KT *2 N is called the effective
N, =2 ; density-of-states function
h In the conduction band.
Then —(E,.-E
n, =N, exp[ ( :(T F)}
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N, IS called the effective density-of-states function in the conduction
band. If we were to assume that m_~ = m,, then at T = 300 K,

27(9.100x10 (1.381x102)300) |
N, =2 ' = =2.5%x10"cm™
(6.626x10°*)

For holes: jg (E)RE

E—EF
exp
1 - kT ) 1

1-f(E)=1-

1+ exp( = ;TEF j 1+ exp( = ;TEF j 1+ exp( EFk‘F £

If (Er—E,) >> KT, then (E.—E) >> kT.

1-f (E)= exp[_(EF — E)}

KT
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Az(om: ) _(E. —-E
po:_[_io (h3p) \/EV—Eexp ( kFT ) dE
If we let , E,—E ) )
77 =
Then KT

_4x(2m kT " —(E. —E )]0
P, = (hgp ) exp[ (ET V)}Lw(n')l’zexp(—n')dn'

* 3/2
27im KT (E_ -
o :2{ h;’ ] exp{ (E; EV)}

If we let - 27zm;kT 3/2  then N exp|:_(EF_EV):|
v h? o KT

N, Is called the effective density-of-states function in the valence band.
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The Intrinsic Carrier Concentration

We use n; and p; to denote electron and hole concentrations in an intrinsic
semiconductor. Since n; = p;, we usually use n; to denote either the intrinsic
electron or hole concentration. The Fermi level for an intrinsic semiconductor
Is called the intrinsic Fermi energy, Eg;.

Ne =" = Nc exp[_(EC B EFi ):l

KT
_(EF' -E )}
—p =n. =N i Vv
pO pl nl vexp|: kT
ni2 _ Nch exp|:_(Ec — EFi ):| exp[_(EF‘ — Ev ):|
KT KT

>

— — —E
> =N_N, exp{ (E. EV)} = N_N, exp J
KT KT
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At T =300 K

N.(cm~3) N,(cm~3) m*/m, my [ my
Silicon 2.8 x 10" 1.04 x 10" 1.08 0.56
Gallium arsenide 4.7 x 107 7.0 x 10% 0.067 0.48
Germanium 1.04 x 10" 6.0 x 108 0.55 0.37
Silicon n; =15 x 109 ¢cm-3
Gallium arsenide n; =18 X 10® cm™?

Germanium

TR 2.4 X 108 ¢cm™3

N., N,, and n; are constant for a given semiconductor material at
a fixed temperature.
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The Intrinsic Fermi Level Position

We can calculate the Fermi level position since the electron and hole
concentrations are equal for an intrinsic semiconductor:

N, =N, exp{_(EC ~Er )} =p, =N, exp{_(EFi — EV)}

KT KT

-E +E+En —E, =kT In[ Evj

C

If mp* =m,", the intrinsic Fermi

1 1 N level will be in the center of the
E.==(E,+E,)+=kT In( Vj bandgap. If m,* > m_*, the

2 2 FaN e intrinsic Fermi level will be
E _E. +§kT in| M slightly above the center. If m "

0T g m; < m,", the intrinsic Fermi level
s (S will be slightly below the center
Eri — Enigga = ZkT In mf of the bandgap.
N
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Donor Atoms and Energy Levels

Real power of semiconductors is realized by adding controlled amounts of
specific dopant, or impurity atoms. The doped semiconductor is called an
extrinsic material. Doping is the primary reason that we can fabricate various
semiconductor devices.
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Add a group V element, such as phosphorus, to silicon as a substitutional
Impurity. The group V element has five valence electrons. Four of these will
contribute to the covalent bonding with the silicon atoms, leaving the fifth
more loosely bound to the phosphorus atom.
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Donor Atoms and Energy Levels

Conducﬁon bzihd

E.

Eq4
=
5
=
Q
=
e
3
m

e

+ * + Eq
-
=11
k)
=
L
=
£
ks
m

At very low temperatures, the extra electron
IS bound to the phosphorus atom. However, it
should be clear that the energy required to
elevate the extra electron into the conduction
band is considerably smaller than that for the
electrons involved in the covalent bonding.

The electron elevated into the conduction
band can move through the crystal to
generate a current, while the positively
charged phosphorous atoms are fixed in the
crystal. This type of atom is called a donor
Impurity atom. The donor atoms add
electrons to the conduction band without
creating holes in the valence band. The
resulting material is referred to as an n-type
semiconductor.
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Acceptor Atoms and Energy Levels

" I I I I
" I I I I I I
I

I
| I

1 I H I I I I
i

|
I
|
===8i Si S

= Si Si 8i === S=='S Si Si i Si S ===
=== : : § s R E——— pi S TE === g : : = B —— ===
Si Si Si Si [3oRa Si Si Si Si Sl;‘ i Si
S L SRS Tk e
=== 8 Si Si Si Si Si === = Si Si { Si Si Si ===
==Z g Si Si Si Si Si === === s Si si B gy == 5 == gj ===

11 1] 1 1 | 1 11 I Il 1

1
11 11 1 1l 1 1 I 1 11 1| 11 1
1 1 1 1 1 1 1 1 1 1 ]

Consider adding a group 111 element, such as boron, which has three valence
electrons. One covalent bonding position is empty. If an electron were to
occupy this “empty” position, its energy would have to be greater than that of
the valence electrons, since the net charge of the B atom would become
negative. However, the electron occupying this “empty” position does not
have sufficient energy to be in the conduction band, so its energy is far
smaller than the conduction band energy. The “empty” position associated
with the B atom can be occupied and other valence electron positions become
vacated. These other vacated electron positions can be thought of as holes.
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Electron energy =

Electron energy =

Acceptor Atoms and Energy Levels

~ Conduction band

The hole can move through the crystal to
generate a current, while the negatively
charged boron atoms are fixed in the crystal.
The group Il atom accepts an electron from
the valence band and so is referred to as an
acceptor impurity atom. The acceptor atom
can generate holes in the valence band
without generating electrons in the
conduction band. This type of semiconductor
material is referred to as a p-type
semiconductor.

An extrinsic semiconductor will have either
a preponderance of electrons (n-type) or a
preponderance of holes (p-type).
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lonization Energy

We can calculate the approximate distance of the donor electron from the
donor impurity ion, and also the approximate energy required to elevate the
donor electron into the conduction band. This energy is referred to as

. We will use the Bohr model of the atom for these

calculations.

The permittivity of the semiconductor material instead of the permittivity of
free space will be used, and the effective mass of the electron will be used.

From the Coulomb force of attraction being equal to the centripetal
force of the orbiting electron:

e’ mv
~ =
Arrer r

*
Assume that the angular momentum is quantized, M IV = N#h
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V=— n=1223,...
mr,
- N°h%4re
" m e’
. Arre i°
The Bohr radius is a, = 02 =(0.053nm
r m
Then e 7
a, m

If we consider n = 1 state, and if we consider silicon, for which g =
11.7, m*/m, = 0.26, then we have

I .
1 — 45 I, =2.39nm For silicon, a = 0.543 nm.
d,
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2

e
V =
Arenh
L _ * 4
The kinetic energy is T _ im*vz _ m2 € :
2 2(nh)’ (47¢)
2 * 4
The potential energy is Vo _ _Zm € :
Arer,  (nh) (47¢)
. —me*
The total energy Is E=T+V = : >
2(nh)’ (47¢)
The lowest energy state of the : . SMIECTReVIDS -
hydrogen atom is E = -13.6 I::’:(:';“y = -
eV. For silicon, the lowest Phosphorus 0.045 eV 0.012 eV
- rsenic : 012
energy is E = -25.8 meV (E, = Ai‘epmrs i Lgll
1.12 eV at T = 300 K). Boron 0.045 0.0104
Aluminum 0.06 0.0102
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Group llI-V Semiconductors

The donor and acceptor impurities in I11-V compound semiconductors is
more complicated than that in Si. When we talk about donors or acceptors in
[11-V semiconductors, we need to know for which atoms (111 or V) impurity
atoms are substituted. For example, for Si atoms in gallium arsenide
semiconductor, if Si atoms replace gallium atoms, Si impurities will act as
donors. But if Si atoms replace arsenic atoms, they will act as acceptors.

For gallium arsenide Donor impurity Ionization energy (eV)
Selenium 0.0059
Tellurium 0.0058
Silicon 0.0058
Germanium 0.0061

Acceptor impurity
Beryllium 0.028
Zinc 0.0307
Cadmium 0.0347
Silicon 0.0345
Germanium 0.0404

PHY4320 Chapter Four (I1) 19



Equilibrium Distribution of Electrons and Holes in
Extrinsic Semiconductors

Adding donor or acceptor impurity atoms
to a semiconductor will change the
distribution of electrons and holes in the
material. Since the Fermi energy is
related to the distribution function, the
acatn,-  FEIMI energy will change as dopant

Electron

o L M S0 R oo @tOMS are added.
m trat

\.‘ In general, when E > E the density

_ midgap’
of electrons is larger than that of holes,

E \
v J}V\ and the semiconductor Is n-type.

Area=p =
7 Hole concentration
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Equilibrium Distribution of Electrons and Holes in
the Extrinsic Semiconductor

E

T In general, when Eg < E ;444 the density
of electrons is smaller than that of holes,
and the semiconductor is p-type.

\ g(E)
e = - E -
\\fw) 5 N, = N exp ( (I:(T F)
E'“i"g"""":\: ————————————— ___(E B E )—_
‘ — F
(s s, oy Po = N, &xp) —— ——

The above are general equations for n,
and p, in terms of the Fermi energy.

=<7
ocemcamion - The values of n, and p, will change with
7 /” the Fermi energy, E..
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Example: consider silicon at T = 300 K so that N, = 2.8 x 10 cm= and N, =
1.04 x 108 cm=3. If we assume the Fermi energy is 0.25 eV below the
conduction band, calculate the thermal equilibrium concentrations of
electrons and holes. The bandgap energy of silicon is 1.12 eV.

Solution: E,—E. =0.25eV E. - E, =0.87eV

~(0.25)(1.602x107*°)

(1.381x107%|300)

—~(0.87)(1.602x10*
(1.381x107% 300)

Comment: electron and hole concentrations change by orders of magnitude
from the intrinsic carrier concentrations (at 300 K, n. = 1.5 x 100 cm-3) as
the Fermi energy changes by a few tenths of an eV.

In an n-type semiconductor, n, > p,, electrons are referred to as majority
carriers and holes as minority carriers. In an p-type semiconductor, p, >
n,, holes are referred to as majority carriers and electrons as minority
carriers.

n, = (2.8><1019)exp{ =1.8x10"cm™®

P, = (1.O4><1019)exp[ } =2.6x10°cm™
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We can derive another form of the equations for the thermal-
equilibrium concentrations of electrons and holes:

N, = N, exp[_(ELT_ a: )} =N, exp{_(EC — EFiIZ: (E ~Ex )}

KT
—\E. —E —\E.. —E, )+(E. — E
pO — Nv eXp|: ( li-l- v):l — Nv eXp|: ( Fi leT ( Fi F ):|
_ EFl - EF _ _(EF B EFI )}
pO nl eXp|: :| r]i p|: kT
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The nyp, Product

Ne Py = Nch exp|:_(E(l:<_F EF ):|exp|:_(EF B Ev):|

KT

~N N __Eg__ 2
nOpO_ C veXp kT _ni

The product of n, and p, Is always a constant for a given semiconductor
material at a given temperature. It is one of the fundamental principles of
semiconductors in thermal equilibrium.

It is important to keep in mind that the above equation is derived using the
Boltzmann approximation.

We may think of the intrinsic concentration n; simply as a parameter of the
semiconductor material.

PHY4320 Chapter Four (I1) 24



The Fermi-Dirac Integral
v, = [ 9.(E)fe (E)E

C

n0:4_72'(2 *)3/2J‘oo E—ECdE

3 n .
h E°1+exp(E EF)
KT
E-E E.-E
If we define = - and =——=¢
T G
2m KT e n"*dn
n,=4r >
h 0 1+exp(i7 -7, )

o 771/2d77
F1/2(UF):_[O ( - ) 4= | Fermi-Dirac integral
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2 == For holes:
7 E,
1 7 po = 9 (EJL- fr(E)E
5 7
% / ® n2 E — EdE
B Fump= [ s P, = 4z (Zm )3/2j Y
g 0 , h? o0 (EF - Ej
2 7 1+exp
£ / kT
£ / If we define
7 E,—E E,-E
/ t= Y and = —F
F T TF T

(Ep ~Ec)kT =y

We need to use the Fermi-
Dirac integral when E¢ Is
above E_ or below E,.

* 3/2
0 = dr 2m kT [ (7 )" dy
X h? o 1+exp(n' —7'¢)
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Degenerate and Nondegenerate Semiconductors

When discussing donors and acceptors, the concentration of dopant atoms is
assumed to be small compared to the density of host atoms. The impurities
Introduce discrete, non-interacting donor and acceptor energy states in the n-
type and p-type semiconductor, respectively. These types of semiconductors
are referred to as nondegenerate semiconductors.

As the impurity concentration increases, the distance between the impurity
atoms decreases and the electrons from the impurity atoms will begin to
Interact. When this occurs, the discrete donor or acceptor energy level will
split into a band of energies. As the impurity concentration further increases,
the band of donor or acceptor states widens and overlaps with the bottom of
the conduction band or the top of the valence band. When the concentration
of electrons in the conduction band exceeds the density of states N, the Fermi
energy lies within the conduction band. This type of semiconductors is called
degenerate n-type semiconductors. When the concentration of holes
exceeds the density of states N,, the Fermi energy lies in the valence band.
This type of semiconductors is called degenerate p-type semiconductors.
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Degenerate and Nondegenerate Semiconductors
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Statistics of Donors and Acceptors
The probability of the donor energy level being occupied is

1

1+1exp( B —Es j
2 KT

Each donor level could be empty, contain one electron of
either spin, or two electrons of opposite spins. However, the
Coulomb repulsion of two localized electrons raises the
energy of the doubly occupied level so high that double
occupation is essentially prohibited. This is the reason for
the factor of %2 appearing in the probability function.

n, = N, n, is the density of electrons occupying the
1+£exp E, —Er ) |donor level.
2 kT N, Is the concentration of donor atoms.
N, Is the concentration of ionized donors.
Ng =Ny - NJ :
P, = N, g Is a degeneracy factor. The ground state g Is
1+ = ex - —E, normally taken as 4 for the acceptor level in Si and
g P kT GaAs because of the detailed band structure.
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Complete lonization and Freeze-Out
If (E, — EF) >> KT, we then have

n, = N, ~ 2N, exp _(Ed_EF)
1 ( E, - E. j kT
1+—exp
2 KT
Because n, = N, exp[_ (Ec —E¢ )}
KT
We can determine the .
percentage of electrons 2N, exp|:_( d__—F )}
in the donor state g _
compared with the Nt o exp[—(Ed —Ee )} PN exp{_(EC —E¢ )}
total number of KT kT
electrons:
n, 1
Ny + N 1+ Nc exp|:_(Ec_Ed):|
2N, KT
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For phosphorus-doped silicon at T = 300 K, N, = 2.8 x 10 cm3, N, = 10%°
cm3, and the ionization energy is 0.045 eV:
n
d_ — T 1 =0.004 = 0.4%
n, +n, 2.8x10° (—0.045)

H 2(10%°) 0.0259

At room temperature, the donor states are almost completely ionized,
which is also true for the acceptor states at room temperature.

Conduction band
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At T =0 K, all electrons are in their lowest energy state. For an n-type
semiconductor, each donor state must contain an electron, therefore, ny = N,.

exp|(E, —E;)/KT]=0
T=0

The Fermi level is above the donor level for an n-type semiconductor at
T =0 K. Similarly, the Fermi level will be below the acceptor level for a

p-type semiconductor at T =0 K.

= Er > E,

Conduction band
ek E Conduction band
>
o0
L >
: ———————————————————— E m
g Fl E -------------------- EFI
E V)
3 5
m g
=
m

Freeze-out (T = 0 K)
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