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Chapter 4: Semiconductor PhysicsChapter 4: Semiconductor Physics

Crystal structures of solids

Energy band structures of solids

Charge carriers in semiconductors

Carrier transport
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The densities of electrons and holes are related to the density-of-states 
function and the Fermi distribution function.

Equilibrium Distribution of Electrons and HolesEquilibrium Distribution of Electrons and Holes

( ) ( ) ( )EfEgEn Fc=

( ) ( ) ( )[ ]EfEgEp Fv −= 1
The total electron/hole concentration per unit volume is found by integrating 
the corresponding function over the entire conduction/valence band energy.
We need to determine the Fermi energy in order to find the thermal-
equilibrium electron and hole concentrations.
We first consider an intrinsic semiconductor. An ideal intrinsic 
semiconductor is pure semiconductor without impurities or lattice defects. At 
T = 0 K, all the energy states in the valence band are filled with electrons and 
all the energy states in the conduction band are empty. The Fermi energy 
must be somewhere between Ec and Ev. At T > 0 K, the number of electrons 
in the conduction band is equal to that of holes in the valence band.
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If mn
* = mp

*, the Fermi energy is at 
the midgap energy. If mn

* ≠ mp
*, the 

Fermi level for an intrinsic 
semiconductor will slightly shift 
away from the midgap energy.

Equilibrium Distribution of Electrons and HolesEquilibrium Distribution of Electrons and Holes
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The The nn00 and and pp00 EquationsEquations
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Because the Fermi distribution rapidly approaches zero with increasing 
energy, therefore

If (Ec−EF) >> kT, then (E−EF) >> kT, so that
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So

Nc is called the effective 
density-of-states function 
in the conduction band.
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Nc is called the effective density-of-states function in the conduction 
band. If we were to assume that mn

* = m0, then at T = 300 K,
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For holes:

If (EF−Ev) >> kT, then (EF−E) >> kT.
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Nv is called the effective density-of-states function in the valence band.

Then
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The Intrinsic Carrier ConcentrationThe Intrinsic Carrier Concentration
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We use ni and pi to denote electron and hole concentrations in an intrinsic 
semiconductor. Since ni = pi, we usually use ni to denote either the intrinsic 
electron or hole concentration. The Fermi level for an intrinsic semiconductor 
is called the intrinsic Fermi energy, EFi.
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At T = 300 K

Nc, Nv, and ni are constant for a given semiconductor material at 
a fixed temperature.
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We can calculate the Fermi level position since the electron and hole 
concentrations are equal for an intrinsic semiconductor:

The Intrinsic Fermi Level PositionThe Intrinsic Fermi Level Position
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If mp
* = mn

*, the intrinsic Fermi 
level will be in the center of the 
bandgap. If mp

* > mn
*, the 

intrinsic Fermi level will be 
slightly above the center. If mp

*

< mn
*, the intrinsic Fermi level 

will be slightly below the center 
of the bandgap.
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Add a group V element, such as phosphorus, to silicon as a substitutional 
impurity. The group V element has five valence electrons. Four of these will 
contribute to the covalent bonding with the silicon atoms, leaving the fifth 
more loosely bound to the phosphorus atom.

Donor Atoms and Energy LevelsDonor Atoms and Energy Levels
Real power of semiconductors is realized by adding controlled amounts of 
specific dopant, or impurity atoms. The doped semiconductor is called an 
extrinsic material. Doping is the primary reason that we can fabricate various 
semiconductor devices.
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Donor Atoms and Energy LevelsDonor Atoms and Energy Levels
At very low temperatures, the extra electron 
is bound to the phosphorus atom. However, it 
should be clear that the energy required to 
elevate the extra electron into the conduction 
band is considerably smaller than that for the 
electrons involved in the covalent bonding.

The electron elevated into the conduction 
band can move through the crystal to 
generate a current, while the positively 
charged phosphorous atoms are fixed in the 
crystal. This type of atom is called a donor 
impurity atom. The donor atoms add 
electrons to the conduction band without 
creating holes in the valence band. The 
resulting material is referred to as an n-type 
semiconductor.
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Consider adding a group III element, such as boron, which has three valence 
electrons. One covalent bonding position is empty. If an electron were to 
occupy this “empty” position, its energy would have to be greater than that of 
the valence electrons, since the net charge of the B atom would become 
negative. However, the electron occupying this “empty” position does not 
have sufficient energy to be in the conduction band, so its energy is far 
smaller than the conduction band energy. The “empty” position associated 
with the B atom can be occupied and other valence electron positions become 
vacated. These other vacated electron positions can be thought of as holes.

Acceptor Atoms and Energy LevelsAcceptor Atoms and Energy Levels
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The hole can move through the crystal to 
generate a current, while the negatively 
charged boron atoms are fixed in the crystal. 
The group III atom accepts an electron from 
the valence band and so is referred to as an 
acceptor impurity atom. The acceptor atom 
can generate holes in the valence band 
without generating electrons in the 
conduction band. This type of semiconductor 
material is referred to as a p-type 
semiconductor.

An extrinsic semiconductor will have either 
a preponderance of electrons (n-type) or a 
preponderance of holes (p-type).

Acceptor Atoms and Energy LevelsAcceptor Atoms and Energy Levels
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We can calculate the approximate distance of the donor electron from the 
donor impurity ion, and also the approximate energy required to elevate the 
donor electron into the conduction band. This energy is referred to as the 
ionization energy. We will use the Bohr model of the atom for these 
calculations.

The permittivity of the semiconductor material instead of the permittivity of 
free space will be used, and the effective mass of the electron will be used.

From the Coulomb force of attraction being equal to the centripetal 
force of the orbiting electron:

Ionization EnergyIonization Energy
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The lowest energy state of the 
hydrogen atom is E = −13.6 
eV. For silicon, the lowest 
energy is E = −25.8 meV (Eg = 
1.12 eV at T = 300 K).
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Group IIIGroup III--V SemiconductorsV Semiconductors
The donor and acceptor impurities in III-V compound semiconductors is 
more complicated than that in Si. When we talk about donors or acceptors in 
III-V semiconductors, we need to know for which atoms (III or V) impurity 
atoms are substituted. For example, for Si atoms in gallium arsenide 
semiconductor, if Si atoms replace gallium atoms, Si impurities will act as 
donors. But if Si atoms replace arsenic atoms, they will act as acceptors. 

For gallium arsenide
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Equilibrium Distribution of Electrons and Holes in Equilibrium Distribution of Electrons and Holes in 
Extrinsic SemiconductorsExtrinsic Semiconductors

Adding donor or acceptor impurity atoms 
to a semiconductor will change the 
distribution of electrons and holes in the 
material. Since the Fermi energy is 
related to the distribution function, the 
Fermi energy will change as dopant 
atoms are added.

In general, when EF > Emidgap, the density 
of electrons is larger than that of holes, 
and the semiconductor is n-type.
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Equilibrium Distribution of Electrons and Holes in Equilibrium Distribution of Electrons and Holes in 
the Extrinsic Semiconductorthe Extrinsic Semiconductor

In general, when EF < Emidgap, the density 
of electrons is smaller than that of holes, 
and the semiconductor is p-type.
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The above are general equations for n0
and p0 in terms of the Fermi energy. 
The values of n0 and p0 will change with 
the Fermi energy, EF.



PHY4320 Chapter Four (II) 22

Example: consider silicon at T = 300 K so that Nc = 2.8 × 1019 cm−3 and Nv = 
1.04 × 1019 cm−3. If we assume the Fermi energy is 0.25 eV below the 
conduction band, calculate the thermal equilibrium concentrations of 
electrons and holes. The bandgap energy of silicon is 1.12 eV.

Comment: electron and hole concentrations change by orders of magnitude
from the intrinsic carrier concentrations (at 300 K, ni = 1.5 × 1010 cm-3) as 
the Fermi energy changes by a few tenths of an eV.
In an n-type semiconductor, n0 > p0, electrons are referred to as majority 
carriers and holes as minority carriers. In an p-type semiconductor, p0 > 
n0, holes are referred to as majority carriers and electrons as minority 
carriers.
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We can derive another form of the equations for the thermal-
equilibrium concentrations of electrons and holes:
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The The nn00pp00 ProductProduct
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The product of n0 and p0 is always a constant for a given semiconductor 
material at a given temperature. It is one of the fundamental principles of 
semiconductors in thermal equilibrium.

It is important to keep in mind that the above equation is derived using the 
Boltzmann approximation.

We may think of the intrinsic concentration ni simply as a parameter of the 
semiconductor material.
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The FermiThe Fermi--Dirac IntegralDirac Integral
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For holes:

We need to use the Fermi-
Dirac integral when EF is 
above Ec or below Ev.
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Degenerate and Degenerate and NondegenerateNondegenerate SemiconductorsSemiconductors
When discussing donors and acceptors, the concentration of dopant atoms is 
assumed to be small compared to the density of host atoms. The impurities 
introduce discrete, non-interacting donor and acceptor energy states in the n-
type and p-type semiconductor, respectively. These types of semiconductors 
are referred to as nondegenerate semiconductors.

As the impurity concentration increases, the distance between the impurity 
atoms decreases and the electrons from the impurity atoms will begin to 
interact. When this occurs, the discrete donor or acceptor energy level will 
split into a band of energies. As the impurity concentration further increases, 
the band of donor or acceptor states widens and overlaps with the bottom of 
the conduction band or the top of the valence band. When the concentration 
of electrons in the conduction band exceeds the density of states Nc, the Fermi 
energy lies within the conduction band. This type of semiconductors is called 
degenerate n-type semiconductors. When the concentration of holes 
exceeds the density of states Nv, the Fermi energy lies in the valence band.
This type of semiconductors is called degenerate p-type semiconductors.
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Degenerate and Degenerate and NondegenerateNondegenerate SemiconductorsSemiconductors

Degenerate

Nondegenerate
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Statistics of Donors and AcceptorsStatistics of Donors and Acceptors

nd is the density of electrons occupying the 
donor level.
Nd is the concentration of donor atoms.
Nd

+ is the concentration of ionized donors.

The probability of the donor energy level being occupied is
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Each donor level could be empty, contain one electron of 
either spin, or two electrons of opposite spins. However, the 
Coulomb repulsion of two localized electrons raises the 
energy of the doubly occupied level so high that double 
occupation is essentially prohibited. This is the reason for 
the factor of ½ appearing in the probability function.
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g is a degeneracy factor. The ground state g is 
normally taken as 4 for the acceptor level in Si and 
GaAs because of the detailed band structure.
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CompleteComplete Ionization and FreezeIonization and Freeze--OutOut
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If (Ed − EF) >> kT, we then have
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We can determine the 
percentage of electrons 
in the donor state 
compared with the 
total number of 
electrons:
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For phosphorus-doped silicon at T = 300 K, Nc = 2.8 × 1019 cm-3, Nd = 1016

cm-3, and the ionization energy is 0.045 eV:
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At room temperature, the donor states are almost completely ionized, 
which is also true for the acceptor states at room temperature.

Complete ionization
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At T = 0 K, all electrons are in their lowest energy state. For an n-type 
semiconductor, each donor state must contain an electron, therefore, nd = Nd.
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The Fermi level is above the donor level for an n-type semiconductor at 
T = 0 K. Similarly, the Fermi level will be below the acceptor level for a 
p-type semiconductor at T = 0 K.

Freeze-out (T = 0 K)


