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In digital communications, signals are generally sent as light pulses 
along an optical fiber. Information is first converted to an electrical 
signal in the form of pulses that represent bits of information. The 
electrical signal drives a laser diode whose light output is coupled into 
a fiber for transmission. The light output at the destination end of the 
fiber is coupled to a photodetector that converts the light signal back to 
an electrical signal. The information bits are then decoded from this 
electrical signal.

Communications with Optical FibersCommunications with Optical Fibers
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Chapter 4: Semiconductor PhysicsChapter 4: Semiconductor Physics

Crystal structures of solids

Energy band structures of solids

Charge carriers in semiconductors

Carrier transport
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SemiconductorsSemiconductors
Semiconductors are a group of materials having conductivities 
between those of metals and insulators.
Two general classifications of semiconductors are elemental 
semiconductor materials (e.g., Si and Ge) and compound 
semiconductor materials (e.g., AlP, AlAs, GaP, GaAs, InP).
Silicon is by far the most common semiconductor used in integrated 
circuits.
Gallium arsenide is the most common of compound 
semiconductors. Its good optical properties make it useful in optical 
devices. It is also used in specialized applications, for example, 
when high speed is required.
There are more complex compound semiconductors, for example, 
AlxGa1-xAs, which provide flexibility when choosing material 
properties.
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SemiconductorsSemiconductors
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polycrystalline

Types of SolidsTypes of Solids

amorphous single crystal

There are three general types of solids: amorphous, polycrystalline, and 
single crystal. They are characterized by the size of ordered regions within 
the material. An ordered region is a spatial volume in which atoms or 
molecules have a regular geometric arrangement or periodicity.
Amorphous materials: order within a few atomic or molecular dimensions.
Polycrystalline materials: a number of regions with order over many atomic 
or molecular dimensions. These ordered regions are called grains, which are 
separated from one another by grain boundaries.
Single crystal materials: a high degree of order or regular geometric 
periodicity throughout the entire volume of the material.
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Lattices and Unit CellsLattices and Unit Cells
A representative unit, or group of atoms in single-crystal materials is repeated 
at regular intervals in each of the three dimensions. The periodic arrangement 
of the unit or group in the crystal is called the lattice. Each unit or group can 
be represented by a dot, which is called a lattice point.
Single crystal lattices have translational symmetries (assuming each crystal is 
infinitely large in space). They can be characterized by three non-colinear
directions. These translation directions need not be perpendicular to each 
other.
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Lattices and Unit CellsLattices and Unit Cells
Because a three-dimensional lattice is a periodic repetition of a group 
of atoms, we need consider only a fundamental unit that is being
repeated. A unit cell is a small volume of the crystal that can be used 
to reproduce the entire crystal.

A unit cell is not a unique entity. There exist various possible unit 
cells.

A primitive cell is the smallest unit cell that can be repeated to form 
the lattice.

In many cases, it is more 
convenient to use a unit cell 
that is not a primitive cell. 
Unit cells may be chosen to 
have orthogonal sides.
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A Generalized Primitive CellA Generalized Primitive Cell

The lattice is characterized by three vectors a, b, and c, which need not 
be perpendicular and which may or may not be equal in length. Every 
equivalent lattice point in the three-dimensional crystal can be found 
using the vector

where p, q, and s are integers.
r = pa + qb +sc
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7 crystal classes, 14 Bravais lattices.
P: primitive; I: body-centered; F: face-centered; C: side-centered
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Examples of Some Basic Crystal StructuresExamples of Some Basic Crystal Structures

For these structures, we can choose three vectors a, b, and c that are 
perpendicular to each other and equal in length.

The sc structure has an atom located at each corner. The bcc structure 
has an additional atom at the center of the cube. The fcc structure has 
additional atoms on each face plane.

simple cubic (sc)
face-centered

cubic (fcc)
body-centered

cubic (bcc)
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Real crystals are not infinitely large. They have surfaces. Crystal surfaces are 
often related to different lattice planes. Lattice planes are characterized with 
Miller indices (hkl), which are a set of integers with no common factors, 
inversely proportional to the intercepts of the crystal plane along the crystal 
axes:

Crystal Planes and Miller IndicesCrystal Planes and Miller Indices

Parallel lattice planes have same Miller indices 
and are entirely equivalent to each other.

p = 3, q = 2, s = 1
The reciprocals of the intercepts are ⎟
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Multiply the smallest common 
denominator, which is 6 in this 
case, to obtain (hkl) = (2,3,6)
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• When planes are parallel to certain axes, the corresponding intercepts will 
be ∞ and thus the reciprocals will be zeros.

• If a plane passes through the origin, we would obtain infinity as one or more 
of the Miller indices. However, we can avoid the use of infinity by translating 
the origin to another equivalent lattice point since the location of the origin 
is entirely arbitrary.

• Each face plane of the sc structure is entirely equivalent. These planes are 
grouped together and referred to as the {100} set of planes.

• The distance between parallel lattice planes and the concentrations of 
atoms in specific planes are important parameters.

Common Lattice Planes in Cubic CrystalsCommon Lattice Planes in Cubic Crystals

(100) (111)(110)
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Consider the atoms on the (110) plane. The atom at each corner is shared by 
four similar rectangles. So one fourth of each atom at the corner contributes 
to the shaded rectangle. The four corner atoms effectively contribute one 
atom to the shaded rectangle. The atom at the center is not shared by any 
other rectangle. It is entirely included in the shaded rectangle. Therefore, the 
shaded rectangle contains two atoms.

Surface Density of Atoms on a Particular PlaneSurface Density of Atoms on a Particular Plane
Example: consider the bcc structure. Assume the atoms can be represented as hard 
spheres with the closest atoms toughing each other and the lattice constant is 0.5 nm. 
Calculate the surface density of atoms on the (110) plane.
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Solution: the surface density is found by dividing the number of lattice atoms by the 
surface area.

The surface density of atoms is a function of the particular crystal plane 
and generally varies from one crystal plane to another.

Surface Density of Atoms on a Particular PlaneSurface Density of Atoms on a Particular Plane
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Description of directions in a lattice:
In addition to lattice planes, we also want to describe a particular direction in 
the crystal. The direction can be expressed as a set of three integers that are 
the components of a vector in that direction. For example, the body diagonal 
in the sc lattice has vector components of 1,1,1. The body diagonal is then 
described as the [111] direction. The brackets are used to designate direction 
as distinct from the parentheses used for crystal planes.



PHY4320 Chapter Four (I) 15

Silicon is the most common semiconductor material. Both silicon and 
germanium have a diamond crystal structure. (Of course diamonds also 
have such a crystal structure!)

There are totally eight Si atoms in the unit cell. The basic building 
block of the diamond structure is the tetrahedral structure.

The Diamond StructureThe Diamond Structure
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An important characteristic of the diamond structure is that any atom in 
the structure has four nearest-neighbor atoms.
All atoms in the diamond structure are of the same species, such as 
silicon or germanium.

The Diamond StructureThe Diamond Structure
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The zincblende (sphalerite) structure differs from the diamond structure only 
in that there are two different types of atoms in the structure.
Compound semiconductors, such as GaAs, have the zincblende structure.
The important feature of both the diamond and zincblende structure is that 
each atom has four nearest-neighbor atoms.

The The ZincblendeZincblende ((SphaleriteSphalerite) Structure) Structure
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The formation of one particular crystal structure depends on the interaction, 
or the type of bond, between atoms in the crystal.
The interaction between atoms can be described by quantum mechanics.
The interaction of atoms tends to form closed valence shells. The elements 
(e.g., Na, K) in group I tend to lose their one electron and become positively 
charged. The elements (e.g., Cl, Br) in group VII tend to gain one electron 
and become negatively charged. These oppositely charged ions experience a 
Coulomb attraction to form a bond referred to as an ionic bond. Some 
examples of ionic bonding are NaCl and KBr.

Atomic BondingAtomic Bonding

Another atomic bond that tends to achieve closed valence 
shells is covalent bonding. For example, in the hydrogen 
molecule, a hydrogen atom has one electron and needs one 
more electron to complete the valence shell. Covalent 
bonding results in electrons being shared between atoms so 
that in effect the valence shell of each atom is full.

H H

HH
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qualitatively, we may think of positive sodium ions being surrounded by a sea 
of negative electrons, the solid being held together by the electrostatic forces.
The fourth type of atomic bond is called the van der Waals bond, which is 
the weakest of atomic bonds. It results from weak dipole interactions between 
molecules. Solids formed by this type of bond have low melting 
temperatures.

Atomic BondingAtomic Bonding
Si has four valence electrons. Each Si atom needs four 
more electrons to complete the valence shell. Therefore, 
each Si atom forms four covalent bonds with four 
neighboring Si atoms, which results in the formation of 
diamond structure.
The third major type of atomic bonding is referred to as 
metallic bonding. Group I elements have one valence 
electron. They tend to lose one electron to become 
positively charged. For example, when a large number 
of Na atoms are brought into close proximity,
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Imperfections in SolidsImperfections in Solids
In real crystals, lattices are not perfect. They contain imperfections and 
impurities, which can alter the electrical properties of solid materials.

One type of imperfections that all crystals have in common is called lattice 
vibration, which is induced by the thermal energy. The thermal motion 
causes the distance between atoms to randomly fluctuate, slightly disrupting 
the perfect geometric arrangement of atoms.

Another type of defects is called point defect, including vacancy and 
interstitial. Vacancy and interstitial not only break the perfect geometric 
arrangement, but also disrupt the ideal chemical bonding between atoms.
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Imperfections in SolidsImperfections in Solids

A line defect occurs when an entire row of atoms is missing from its 
normal site. This defect is referred to as a line dislocation. As with a 
point defect, a line dislocation disrupts both the normal geometric 
periodicity of the lattice and the ideal atomic bonds in the crystal.

A two-dimensional 
representation of a line 

dislocation
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Impurities in SolidsImpurities in Solids

Impurity atoms may be present in a crystal. Impurity atoms may be located at 
normal lattice sites, in which case they are called substitutional impurities. 
Impurity atoms may also be located between normal lattice sites, in which 
case they are called interstitional impurities.
Controlled amounts of particular impurity atoms can favorably alter the 
electrical properties of semiconductors. The technique of introducing 
impurity atoms into a semiconductor in order to alter its conductivity is called 
doping. Two general methods of doping are impurity diffusion and ion 
implantation.
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Doping Si by Diffusion and Ion ImplantationDoping Si by Diffusion and Ion Implantation
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Growth of SemiconductorsGrowth of Semiconductors
The success in fabricating very large scale integrated (VLSI) circuits is a 
result, to a large extent, of the development of and improvement in the 
formation or growth of pure single-crystal semiconductor materials. Si, for 
example, has concentrations of most impurities less than 1 part in 10 billion.

Czochralski crystal puller

crystal growth

trimming

slicing into wafers

lapping

chemical etching

polishing
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Reading Materials

D. A. Neamen, “Semiconductor Physics and Devices: Basic 
Principles”, Irwin, Boston, MA 02116, 1992, Chapter 1, “the 
Crystal Structure of Solids”.
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Chapter 4: Semiconductor PhysicsChapter 4: Semiconductor Physics

Crystal structures of solids

Energy band structures of solids

Charge carriers in semiconductors

Carrier transport
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Formation of Energy BandsFormation of Energy Bands
From quantum mechanics, we know that the 
energy of the bound electron of the hydrogen 
atom is quantized with associated radial 
probability density functions.

The wave function 
for the lowest 
electron energy state

When two hydrogen atoms are brought in 
close proximity, their wave functions will 
overlap , which means the two electrons will 
interact. This interaction results in the 
quantized energy level splitting into two 
discrete energy levels.
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Formation of Energy BandsFormation of Energy Bands
Similarly, when a number of hydrogen-type atoms that are arranged in a 
periodic lattice and initially very far apart are pushed together, the initial 
energy level will split into a band of discrete energy levels.

As an example, suppose that we have a system of 1019 one-electron atoms 
and the width of the energy band at the equilibrium inter-atomic distance is 1 
eV. If the spacing between neighboring levels is the same, the difference in 
neighboring levels will be 10−19 eV, which is extremely small so that we have 
a quasi-continuous energy distribution through the allowed energy band.

According to the Pauli exclusion principle, 
the total number of quantum states will 
remain the same after the joining of atoms to 
form a system (crystal).

There will be many energy levels within the 
allowed band in order to accommodate all of 
the electrons in a crystal.
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Comment: the kinetic energy change is orders of magnitude larger than the 
energy spacing in the allowed energy band, which suggests that the discrete 
energies within an allowed energy band can be treated as a quasi-continuous 
distribution.

Example: consider an electron traveling at a velocity of 107 cm/sec. if the 
velocity increases by 1 cm/sec, calculate the change in its kinetic energy.
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Allowed and Forbidden Energy BandsAllowed and Forbidden Energy Bands
Consider again a periodic arrangement of atoms. Each atom contains 
electrons up to n = 3 energy level. If these atoms are brought together, the 
outermost electrons in the n = 3 energy shell will begin to interact and split 
into a band of allowed energies. As the atoms move closer, the electrons in 
the n = 2 shell, and finally the innermost electrons in the n = 1 shell, will also 
form two bands of allowed energies.
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Allowed and Forbidden Energy BandsAllowed and Forbidden Energy Bands

bands with four quantum states per atom in the lower band and four quantum 
states per atom in the upper band. At absolute zero degrees, all the states in 
the lower band (the valence band) will be occupied by electrons and are full. 
All the states in the upper band (the conduction band) will be empty. The 
energy difference between the top of the valence band and the bottom of the 
conduction band is the bandgap energy.

For silicon, we need only consider the n
= 3 level because the first two energy 
shells are completely full and are tightly 
bound to the nucleus.
The 3s state contains two quantum 
states per atom, and the 3p state 
contains six quantum states per atom.
At the equilibrium inter-atomic 
distance, the 3s and 3p bands mix 
together and split to form two new
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The The KronigKronig--Penney ModelPenney Model

We will consider a one-
dimensional single-crystal lattice.

The potential functions of adjacent 
atoms overlap to form a one-
dimensional periodic potential 
function.

The band structure can be developed 
more rigorously by considering 
quantum mechanics.



PHY4320 Chapter Four (I) 33

We will consider a simplified potential function, which is called the  one-
dimensional Kronig-Penney model of the periodic potential function, and 
solve Schrodinger’s wave equation. The Kronig-Penney model is an idealized 
potential, but the results will reveal many of the important features of the 
quantum theory of solids.

The The KronigKronig--Penney ModelPenney Model

Bloch theorem: all 
one-electron wave 
functions for 
periodically 
varying potentials 
is of the form

( ) ( ) jkxexux =ψ k is called a constant of motion.
u(x) is a periodic function.
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The total solution to the wave equation is the product of the time-
independent solution and the time-dependent solution.

k is also called a 
wave number.

We need to determine the relation between k, E, and V0.
The time-independent wave equation is

Consider the region I (0 < x < a) in which V(x) = 0. We obtain:

Consider the region II (−b < x < 0) in which V(x) = V0. We obtain:
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We may define

The equation for region II becomes

The solution for region I is of the form

The wave function and its first derivative must be continuous. This 
means that the wave amplitude function u(x) and its first derivative 
∂u(x)/∂x must be continuous.

( ) ( ) ( )xkjxkj BeAexu +−− += αα
1 for 0 < x < a

The solution for region II is of the form

( ) ( ) ( )xkjxkj DeCexu +−− += ββ
2 for −b < x < 0
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If we consider the boundary at x = 0, we have

By applying the condition that

We obtain
( ) ( ) ( ) ( )kDkCkBkA +−−=+−− ββαα

Because the wave amplitude function u(x) is periodic, we have
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Then
( ) ( ) ( ) ( )bkjbkjakjakj DeCeBeAe +−−+−− +=+ ββαα

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )bkjbkjakjakj ekDekCekBekA +−−+−− +−−=+−− ββαα ββαα
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Now we have four homogeneous equations:

The most interesting solutions occur for E < V0, which applies to the 
electron bound within the crystal. The parameter β is thus imaginary. 
We can define

We have four homogeneous equations for four unknowns. There is a
nontrivial solution if, and only if, the determinant of the coefficients is 
zero. The result is

( ) ( ) ( ) ( ) 0=++−−+−− DkCkBkAk ββαα
0=−−+ DCBA
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The above equation cannot be solved analytically. We have to use
numerical or graphical methods to obtain the relation between k, E, 
and V0. The solution will result in a band of allowed energies.

Then
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In order to illustrate the nature of the results, we make further 
simplification to let b → 0 and the barrier height V0 →∞, but with the 
product bV0 remaining finite. We then have
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The The kk--Space DiagramSpace Diagram

2
0

h

bamVP' =

kaa
a

aP' coscossin
=+ α

α
α

k
kaa

=
=

α
α coscos

We define a parameter as

We need remember that the above equation is not a solution to the 
wave equation. It only gives the conditions for which Schrodinger’s 
wave equation will have a solution.
We first consider the special case for which V0 = 0. In this case, P′ = 0, 
which corresponds to a free particle since there are no potential 
barriers. We then have

We then have
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k is related to the particle 
momentum for the free electron.
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The kThe k--Space DiagramSpace Diagram

( ) a
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aP'af α
α
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We now consider the case for which V0 > 0. We use the graphical 
method to solve the equation on the previous slide.

The case of the 
free electron

E is a parabolic function of k.

left side =
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The kThe k--Space DiagramSpace Diagram

( ) kaaf cos=α = right side
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The kThe k--Space DiagramSpace Diagram
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The kThe k--Space DiagramSpace Diagram
Displace portions of the curve by multiples of 2π so that the entire E versus k
is contained within −π/a < k < π/a.

in a single crystal is referred to as the crystal momentum.
The basic features of one-dimensional single-crystal lattice can be extended 
to three-dimensional single-crystal materials.

kh

( )πnka 2cos −=

( )πnkaka 2coscos +=
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The Energy Band and the Bond ModelThe Energy Band and the Bond Model
The performance of many semiconductor devices is related to the current-
voltage (I-V) characteristics. We will need to consider electrical conduction in 
solids, which is related to the band theory.

Consider Si. At T = 0 K, each silicon atom is surrounded by eight valence 
electrons that are in their lowest energy state. In terms of the band theory, the 
4N states in the valence band are completely occupied by electrons, and the 
conduction band is completely empty.
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The Energy Band and the Bond ModelThe Energy Band and the Bond Model

At T > 0 K, a few electrons may gain enough thermal energy to break the 
covalent bond and jump into the conduction band.

As a negatively charged electron breaks away from its covalent bonding 
position, a positively charged “empty state” is created in the original covalent 
bonding position in the valence band. As T further increases, more electrons 
jump into the conduction band and more positive “empty states” are created 
in the valence band.
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The Energy Band and the The Energy Band and the 
Bond ModelBond Model

This bond breaking can also be related to the 
E versus k energy bands.

At T = 0 K, the valence band is completely 
full and the conduction band is completely 
empty. At T > 0 K, some electrons have 
gained enough energy to jump to the 
conduction band and have left empty states in 
the valence band.

We assume at this point that there is no 
external forces. The electron and “empty 
state” distributions are symmetrical with k.

T = 0 K

T > 0 K
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If we have a collection of positively charged ions (q) with a volume density N
(cm-3) and an average drift velocity vd (cm/sec), then the drift current density 
is

Drift CurrentDrift Current

( )2A/cmdqNvJ =

∑
=

=
N

i
ivqJ

1

If we consider the individual ion velocities with vi being the velocity of the ith
ion and take the summation over a unit volume, then we have

Electrons are negatively charged. A net drift of 
electrons in the conduction band will give a 
current. However, the electron distribution in the 
conduction band is an even function of k. Recall 
that              for a free electron is related to the 
momentum. The number of the electrons with +|k| 
value is equal to that with −|k| value. The net drift 
current density due to these electrons is zero.

kp h=
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If an external force is applied, electrons will gain energy and momentum and 
the distribution in the conduction band will become asymmetric.

Drift CurrentDrift Current

FvdtFdxdE ==

We can write the drift current density due to the motion of electrons as

∑
=

−=
n

i
iveJ

1

where n is the number of electrons per unit volume. The summation is taken 
over a unit volume so that the current density is A/cm2.
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We can also relate the effective mass of an electron in a crystal to the E
versus k curves. Consider the case of a free electron:

The movement of an electron in a crystal lattice will, in general, be different 
from that of an electron in free space. In addition to an externally applied 
force, there are internal forces in the crystal due to positively charged ions 
and negatively charged electrons.

Electron Effective MassElectron Effective Mass
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Apply the result from the Kronig-Penney model to 
the electron in the bottom of an energy band. The 
energy near the bottom of the energy band may be 
approximated by a parabola:
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Electron Effective MassElectron Effective Mass
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The effective mass is a parameter that relates the quantum mechanical 
results derived from the Kronig-Penney model to the classical force 
equations. In most instances, the electrons in the bottom of the 
conduction band can be thought of as a classical particle whose 
motion can be modeled using Newtonian mechanics, provided that the 
internal forces and quantum mechanical properties are taken into
account through the effective mass mn

*.
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Concept of the HoleConcept of the Hole

If valence electrons gain a certain amount of energy, they can hop into the 
“empty state”. The movement of a valence electron into the “empty state” is 
equivalent to the movement of the positively charged “empty state” itself.
This charge carrier is called a hole and can also be thought of as a classical 
particle whose motion can be modeled using Newtonian mechanics.



PHY4320 Chapter Four (I) 54

The band is symmetric with k. For every electron with a velocity |v|, there is a 
corresponding electron with a velocity −|v|. Because the band is full, the 
distribution of electrons with respect to k cannot be changed by an external 
force. Then we have

The vi in the summation is associated with the empty state.

Concept of the HoleConcept of the Hole
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Consider the electrons in the valence band and their drift current density:

Remember that we have:
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C2 is a positive quantity and thus m* is a negative quantity.

Concept of the HoleConcept of the Hole
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It is equivalent to placing positively charged particles in the empty states and 
assuming all other states in the valence band are empty, or neutrally 
charged.

Consider an electron near the top of a 
valence band:
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Hole Effective MassHole Effective Mass
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If we consider an electron near the top of a valence band and use Newton’s 
force equation for an applied electric field, we will have

The motion of electrons in a nearly full band can be described by considering 
just the empty states. The band can be modeled as having particles with a 
positive electronic charge and a positive effective mass. The density of these 
particles in the valence band is the same as the density of empty electronic 
energy states. This new particle is called the hole. The hole has a positive 
electronic charge and a positive effective mass denoted by mp

*. This quantity 
is used to relate quantum mechanics to classical mechanics.
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Metals, Insulators, and Semiconductors in terms of Metals, Insulators, and Semiconductors in terms of 
Energy Band StructuresEnergy Band Structures

There will be no current for a completely empty 
band because there are no particles to move.

There will also be no current for a completely 
full band because of the band symmetry with 
respect to k.

Insulators have energy bands either completely 
filled or completely empty and bandgap 
energies in the range of 3.5 to 6 eV or larger. 
For comparison, the kT at room temperature (25 
°C) is 25.7 meV.
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Metals, Insulators, and Semiconductors in terms of Metals, Insulators, and Semiconductors in terms of 
Energy Band StructuresEnergy Band Structures

A band with relatively few electrons. If an 
electric field is applied, the electrons can move to 
higher energy states to generate a current.

An almost full band. We can consider the holes, 
which move under an electric field to generate a 
current.

A representative energy band for a semiconductor 
at T > 0 K. The bandgap energy of a 
semiconductor is on the order of 1 eV. The 
conductivity of a semiconductor can be varied 
over many orders of magnitude.
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Metals, Insulators, and Semiconductors in terms of Metals, Insulators, and Semiconductors in terms of 
Energy Band StructuresEnergy Band Structures

Metals have low resistivity values. The 
energy band diagram for a metal can be in 
one of two forms.

One case is a partially filled band in which 
there are many electrons available for 
conduction.

The other case is that the conduction band 
overlaps with the valence band. There are a 
large number of electrons as well as a large 
number of holes for conduction.
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Extension to Three DimensionsExtension to Three Dimensions

Electrons traveling in different directions encounter different potential 
patterns and therefore different k-space boundaries. The E versus k
diagrams are in general a function of the k-space direction in a crystal.

A face-centered cubic crystal
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efficiency of indirect bandgap semiconductors is much smaller than that of direct 
bandgap semiconductors.
The curvature is related to the effective masses of electrons and holes, which 
are different along different directions. Usually a statistical average is used 
for device calculations.

Energy band diagrams 
are symmetric in k so 
that only the positive 
axis is displayed. GaAs
is a direct bandgap
semiconductor. Si is an 
indirect bandgap
semiconductor. The 
electron transitions in 
indirect bandgap 
semiconductors must 
involve changes of 
crystal momentum, and 
thus the emission
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We are eventually interested in the current-voltage characteristics in 
semiconductor devices, which depend on the number of electrons and holes 
available for conduction. The number of carriers is in turn a function of the 
number of available energy or quantum states.
Electrons are allowed to move relatively freely in the conduction band of a 
semiconductor, but they are confined in a crystal. As a first step, consider a 
free electron confined to a three-dimensional infinite potential well:
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V(x,y,z) = 0 for 0 < x < a
0 < y < a
0 < z < a

V(x,y,z) = ∞ elsewhere
Solving Schrodinger’s wave equation in three dimensions leads to:

nx, ny, and nz, are positive integers.
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Schematic showing 
allowed quantum states 
in k-space.

Density of StatesDensity of States
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Only the positive one eighth 
of the spherical k-space should 
be considered.

The distance between two states in the kx direction is

3
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πGeneralizing this result to three dimensions gives the 
volume Vk of a single quantum state:
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Density of StatesDensity of States
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The above formula gives the number of quantum states between k and k + dk.  
We can use this formula to determine the number of quantum states between 
E and E + dE using the relationship between E and k for a free electron:

We now determine the density of quantum 
states in k-space:
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Density of StatesDensity of States
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The density of quantum states per unit volume of the crystal is:

The unit is in terms of states per unit energy per unit volume.
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Example: calculate the density of states with energies between 0 and 1 
eV for a free electron.
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Solution:
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Extension to SemiconductorsExtension to Semiconductors
The E versus k curve near k = 0 at the bottom of the conduction band can be 
approximated as a parabola, which is the same as a free electron, except that 
the mass is replaced by the electron effective mass.
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Valid for E ≥ Ec.
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Extension to SemiconductorsExtension to Semiconductors
We can obtain similar equations for the region close to the top of the valence 
band:
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Valid for E ≤ Ev.
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Statistical LawsStatistical Laws
We are interested only in the statistical behavior of electrons as a 
whole rather than in the behavior of each individual electron because 
the electrical characteristics in a crystal are determined by the 
statistical behavior of a large number of electrons.

Maxwell-Boltzmann distribution: the particles are distinguishable and 
there is no limit to the number of particles allowed in each energy state.

Bose-Einstein distribution: the particles are indistinguishable and there 
is no limit to the number of particles permitted in each energy state.

Fermi-Dirac distribution: the particles are indistinguishable and only
one particle is allowed in each quantum state. Electrons in a crystal 
obey Fermi-Dirac distribution.
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FermiFermi--Dirac Probability FunctionDirac Probability Function

The probability of a quantum state 
being occupied is unity for E < EF
and the probability of a state being 
occupied is zero for E > EF. All  
electrons have energies below the 
Fermi energy at T = 0 K.
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1 At T = 0 K,
when E < EF, fF(E) = 1,
when E > EF, fF(E) =0.

EF is called the Fermi energy.
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FermiFermi--Dirac Probability FunctionDirac Probability Function

If g(E) and N0 are known for a 
system, then the Fermi energy EF
can be determined.
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At T > 0 K, there is a probability that some energy states above EF will 
be occupied by electrons and some energy states below EF will be empty.

At T > 0 K and E = EF,
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FermiFermi--Dirac Probability FunctionDirac Probability Function

The function fF(E) is 
symmetrical with the function 
1−fF(E) about the Fermi energy 
EF.

The total number of electrons in 
the system remains constant, and 
the distribution of these electrons 
among the available states 
changes with temperature.
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MaxwellMaxwell--Boltzmann ApproximationBoltzmann Approximation

When E − EF >> kT,

( ) ( )
⎥⎦
⎤

⎢⎣
⎡ −−

≈
kT

EEEf F
F exp



PHY4320 Chapter Four (I) 74

Reading Materials

D. A. Neamen, “Semiconductor Physics and Devices: Basic 
Principles”, Irwin, Boston, MA 02116, 1992, Chapter 3, 
“Introduction to the Quantum Theory of Solids”.


