Lecture 3

Need for new theory
Stern-Gerlach Experiments

Some doubts

Analogy with mathematics of light
Feynman's double slit thought experiment

• We are formulating a new theory!

- Radiation sometimes behaves as
 - Particles
 - Waves

• Same is true for Matter

Three empirical laws

To explain one physical

Radiation is quantum of energy

Thought Experiments

- Feyman's logical tightrope?
- We have given up asking whether the electron is a particle or a wave
- What we demand from our theory is that given an experiment we must be able to tell whether it will behave as a particle or a wave.
- We need to develop the Mathematics which the language of TRUTH which we all seek
- What kind of Language we seek is the motivation right now.

Stern-Gerlach Experiment (contd)

- One can say it is an apparatus which measures the z component of $\mu \Rightarrow S_z$
- If atoms randomly oriented
 - No preferred direction for the orientation of μ
 - Classically spinning object $\Rightarrow \mu_z$ will take all possible values between $\mu \& -\mu$
- Experimentally we observe two distinct blobs
- Original silver beam into 2 distinct component

What have we learnt from the experiment

- Two possible values of the Z component of S observed $S_Z^{UP} \& S_Z^{down}$
- Refer to them as $S_Z^+ \& S_Z^- \Rightarrow$ Multiples of some fundamental constants, turns out to be

$$+\frac{\hbar}{2}\&-\frac{\hbar}{2}$$

- Spin is quantised
- Nothing is sacred about the z direction, if our apparatus was in x direction we would have observed S_x⁺ & S_x⁻ instead

Thought Experiment continues

- Silver atoms were oriented in all possible directions
- The Stern-Gerlach Apparatus which is a measuring device puts those atoms which were in all possible states in either one of the two states specific to the Apparatus
- No matter how many measurements we make to measure S_z in z direction we put, there is only one beam coming out
- Once the SG App. put it into one of the states repeated measurements OF THE SAME KIND did not disturb the system

Conclusions from Coupled experiment

- Measurements disturb a quantum system in an essential way
- Measurements put the QM System in one of the special states associated with that measurement
- Any further measurement of the same variable does not change the state of the system
- Measurement of another variable may disturb the system and put it in one of its special states.

Complete Departure from Classical Physics

Measurement of S_x destroys the information about S_z

• We can never measure $S_x \& S_z$ together

– Incompatible measurements

• How do you measure angular momentum of a spinning top, $L = I\omega$

• Measure ω_x , ω_v , ω_z

• No difficulty in specifying $L_x L_y L_z$

Analogy

- Consider a monochromatic light wave propagating in Z direction & it is polarised in x direction $E = E_0 \hat{x} Cos(kz - \omega t)$
- Similarly linearly polarised light in y direction is represented by $E = E_0 \hat{y} Cos(kz - \omega t)$
- A filter which polarises light in the x direction is called an X filter and one which polarises light in y direction is called a y filter
- An X filter becomes a Y filter when rotated by 90°

- The selection of x` filter destroyed the information about the previous state of polarisation of light
- Quite analogous to situation earlier
- Carry the analogy further
 - $-S_z \pm x \& y$ polarised light
 - $-S_x \pm x^{*} \& y^{*}$ polarised light

Mathematics of Polarisation

$$E_0 \hat{x}' Cos(kz - \omega t) = E_0 \left[\frac{1}{\sqrt{2}} \hat{x} Cos(kz - \omega t) + \frac{1}{\sqrt{2}} \hat{y} Sin(kz - \omega t) \right]$$

$$E_0 \hat{y}' Cos(kz - \omega t) = E_0 \left[-\frac{1}{\sqrt{2}} \hat{x} Cos(kz - \omega t) + \frac{1}{\sqrt{2}} \hat{y} Sin(kz - \omega t) \right]$$

Mathematics of Polarisation

- In the triple filter arrangement
 - <u>First Filter</u> An x polarised beam linear combination of x ` & y` polarised beam
 - An x polarised beam linear combination of x ` & y` polarised beam
 - <u>Second Filter</u> Selects x ` polarised beam
 - An x` polarised beam linear combination of x & y polarised beam
 - <u>Third Filter</u>– Selects y polarised beam
- This is quite similar to the sequential Stern-Gerlach Experiment
 - We represent the spin state of silver atom by some kind of vector in some abstract space. NOT THE USUAL VECTOR SPACE

The Analogy

- In case of light x and y was my basis
 - I could expand x` in terms of x and y...
- Suppose now I want to describe the SG apparatus
 - I could use two vectors $|S_{z}^{+}\rangle$ and $|S_{z}^{-}\rangle$
 - Notice I am using the hat on the side
 - Then $|S_x^+\rangle = 1/\sqrt{2} [|S_z^+\rangle + |S_z^-\rangle]$
 - $|\mathbf{S}_{\mathbf{y}}^{-}\rangle = 1/\sqrt{2} [|\mathbf{S}_{\mathbf{z}}^{+}\rangle |\mathbf{S}_{\mathbf{z}}^{-}\rangle]$
- Nothing sacred about z or x direction
 - What about y Direction?
 - $-S_{v}^{+} \& S_{v}^{-}$
 - They have to be independent of $|S_x^+\rangle$ and $|S_y^-\rangle$
 - Basis is of two vectors

Analogy further

- Circularly polarised light Now
 - When we pass it thru a x filter only x component goes thru
 - When we pass it thru a y filter only y component goes thru
- Circularly polarised light different from linearly polarised light along x` and y`
- Mathematically --circularly polarised light

y polarised component is 90° out of phase with x component

$$\vec{E} = E_0 \left[\frac{1}{\sqrt{2}} \hat{x} \cos(kz - \omega t) + \frac{1}{\sqrt{2}} \hat{y} \cos(kz - \omega t + \frac{\pi}{2}) \right]$$

More elegant to use complex notation by introducing ϵ

$$\vec{E} = E_0 \left[\frac{1}{\sqrt{2}} \hat{x} e^{i(kz - \omega t)} + \frac{i}{\sqrt{2}} \hat{y} e^{i(kz - \omega t)} \right]$$

 $\operatorname{Re}(\mathcal{E}) =$

Analogy with circularly polarised light

• Now we can represent S_y^+ and S_y^- • Thus $|S_y^+\rangle = 1/\sqrt{2} [|S_z^+\rangle + i |S_z^-\rangle]$ • $|S_y^-\rangle = 1/\sqrt{2} [|S_z^+\rangle - i |S_z^-\rangle]$

- We can describe the SG experiment using the language of vectors
- However no connection with ordinary vectors having magnitude and direction
- That the vector space must be complex

Feynman's thought experiments