Lecture 3

- Need for new theory
- Stern-Gerlach Experiments
- Some doubts
- Analogy with mathematics of light
- Feynman's double slit thought experiment

- We are formulating a new theory!
- Radiation sometimes behaves as
- Particles
- Waves

Three empirical laws To explain one physical phenomenon \Downarrow

Radiation is emitted in Quantas of energy

Radiation is absorbed in Quantas of energy

Radiation is quantum of energy

- Same is true for Matter

Thought Experiments

- Feyman's logical tightrope?
- We have given up asking whether the electron is a particle or a wave
- What we demand from our theory is that given an experiment we must be able to tell whether it will behave as a particle or a wave.
- We need to develop the Mathematics which the language of TRUTH which we all seek
- What kind of Language we seek is the motivation right now.

Stern-Gerlach Experiment

Collimator Slits

Inhomogeneous Magnetic Field

Oven containing Ag atoms

Classically one Would expect this

Nature behaves this way

Stern-Gerlach Experiment (contd)

- One can say it is an apparatus which measures the z component of $\mu \Rightarrow S_{z}$
- If atoms randomly oriented
- No preferred direction for the orientation of μ
- Classically spinning object $\Rightarrow \mu_{\mathrm{z}}$ will take all possible values between μ \& $-\mu$
- Experimentally we observe two distinct blobs
- Original silver beam into 2 distinct component

What have we learnt from the experiment

- Two possible values of the Z component of S observed $S_{Z}{ }^{U P} \& S_{Z}$ down
- Refer to them as $\mathrm{S}_{\mathrm{Z}}{ }^{+} \& \mathrm{~S}_{\mathrm{Z}}{ }^{-} \Rightarrow$ Multiples of some fundamental constants, turns out to be
- Spin is quantised
- Nothing is sacred about the z direction, if our apparatus was in x direction we would have observed $\mathrm{S}_{\mathrm{x}}{ }^{+} \& \mathrm{~S}_{\mathrm{x}}{ }^{-}$ instead

Thought Experiments start

Thought Experiment continues

- Silver atoms were oriented in all possible directions
- The Stern-Gerlach Apparatus which is a measuring device puts those atoms which were in all possible states in either one of the two states specific to the Apparatus
- No matter how many measurements we make to measure S_{z} in z direction we put, there is only one beam coming out
- Once the SG App. put it into one of the states repeated measurements OF THE SAME KIND did not disturb the system

Conclusions from Coupled experiment

- Measurements disturb a quantum system in an essential way
- Measurements put the QM System in one of the special states associated with that measurement
- Any further measurement of the same variable does not change the state of the system
- Measurement of another variable may disturb the system and put it in one of its special states.

Complete Departure from Classical Physics

- Measurement of S_{x} destroys the information about S_{z}
- We can never measure S_{x} \& S_{z} together
- Incompatible measurements
- How do you measure angular momentum of a spinning top, $\mathrm{L}=\mathrm{I} \omega$
- Measure $\omega_{x}, \omega_{y}, \omega_{z}$
- No difficulty in specifying $L_{x} L_{y} L_{z}$

Analogy

- Consider a monochromatic light wave propagating in Z direction \& it is polarised in x direction

$$
E=E_{0} \hat{x} \operatorname{Cos}(k z-\bar{\omega} t)
$$

- Similarly linearly polarised light in y direction is represented by

$$
E=E_{0} \hat{y} \operatorname{Cos}(k z-\bar{\omega})
$$

- A filter which polarises light in the x direction is called an X filter and one which polarises light in y direction is called a y filter
- An X filter becomes a Y filter when rotated by 90°

An Experiment with Light

- The selection of x` filter destroyed the information about the previous state of polarisation of light
- Quite analogous to situation earlier
- Carry the analogy further
$-S_{z} \pm \quad x$ \& y polarised light
$-S_{x} \pm x^{`} \& y^{`}$ polarised light

Mathematics of Polarisation

$$
\begin{aligned}
& E_{0} \hat{x}^{\prime} \operatorname{Cos}(k z-\omega t)=E_{0}\left[\frac{1}{\sqrt{2}} \hat{x} \operatorname{Cos}(k z-\omega t)+\frac{1}{\sqrt{2}} \hat{y} \operatorname{Sin}(k z-\omega t)\right] \\
& E_{0} \hat{y}^{\prime} \operatorname{Cos}(k z-\omega t)=E_{0}\left[-\frac{1}{\sqrt{2}} \hat{x} \operatorname{Cos}(k z-\omega t)+\frac{1}{\sqrt{2}} \hat{y} \operatorname{Sin}(k z-\omega t)\right]
\end{aligned}
$$

Mathematics of Polarisation

- In the triple filter arrangement
$-\frac{\text { First Filter An x polarised beam - linear combination of x }}{\text { }}$ \& y` polarised beam
- An x polarised beam - linear combination of x ` \& y` polarised beam
- Second Filter- Selects x ` polarised beam
- An x` polarised beam - linear combination of x \& y polarised beam
- Third Filter- Selects y polarised beam
- This is quite similar to the sequential Stern-Gerlach Experiment
- We represent the spin state of silver atom by some kind of vector in some abstract space. NOT THE USUAL VECTOR SPACE

The Analogy

- In case of light x and y was my basis
- I could expand x ' in terms of x and $y . .$.
- Suppose now I want to describe the SG apparatus
- I could use two vectors $\left|S_{z}{ }^{+}\right\rangle$and $\left|S_{z}^{-}\right\rangle$
- Notice I am using the hat on the side
- Then $\left|\mathrm{S}_{\mathrm{x}}{ }^{+}\right\rangle=1 / \sqrt{ } 2\left[\left|\mathrm{~S}_{\mathrm{z}}{ }^{+}\right\rangle+\left|\mathrm{S}_{\mathrm{z}}^{-}\right\rangle\right]$
- $\left|S_{y}^{-}\right\rangle=1 / \sqrt{ } 2\left[\left|S_{z}^{+}\right\rangle-\left|S_{z}^{-}\right\rangle\right]$
- Nothing sacred about z or x direction
- What about y Direction?
$-S_{y}^{+} \& S_{y}{ }^{-}$
- They have to be independent of $\left|\mathrm{S}_{\mathrm{x}}{ }^{+}\right\rangle$and $\left|\mathrm{S}_{\mathrm{y}}{ }^{-}\right\rangle$
- Basis is of two vectors

Analogy further

- Circularly polarised light Now
- When we pass it thru a x filter only x component goes thru
- When we pass it thru a y filter only y component goes thru
- Circularly polarised light different from linearly polarised light along x` and y`
- Mathematically --circularly polarised light
y polarised component is 90° out of phase with x component

$$
\vec{E}=E_{0}\left[\frac{1}{\sqrt{2}} \hat{x} \cos (k z-\omega t)+\frac{1}{\sqrt{2}} \hat{y} \cos \left(k z-\omega t+\frac{\pi}{2}\right]\right.
$$

More elegant to use complex notation by introducing ε

$$
\operatorname{Re}(\varepsilon)=\frac{E}{E_{0}}
$$

$$
\vec{E}=E_{0}\left[\frac{1}{\sqrt{2}} \hat{x} e^{i(k z-\omega t)}+\frac{i}{\sqrt{2}} \hat{y} e^{i(k z-\omega t)}\right]
$$

Analogy with circularly polarised light

- Now we can represent S_{y}^{+}and $S_{y}{ }^{-}$
- Thus $\left|\mathrm{S}_{\mathrm{y}}{ }^{+}\right\rangle=1 / \sqrt{ } 2\left[\left|\mathrm{~S}_{\mathrm{z}}{ }^{+}\right\rangle+i\left|\mathrm{~S}_{\mathrm{z}}^{-}\right\rangle\right]$

$$
\text { - } \quad\left|\mathrm{S}_{\mathrm{y}}^{-}\right\rangle=1 / \sqrt{ } 2\left[\left|\mathrm{~S}_{z}^{+}\right\rangle-\left\{\left|\mathrm{S}_{\mathrm{z}}^{-}\right\rangle\right]\right.
$$

- We can describe the SG experiment using the language of vectors
- However no connection with ordinary vectors having magnitude and direction
- That the vector space must be complex

Feynman's thought experiments

