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CHAPTER 7

The  variational principle

�7.1 Theory�7.1 Theory

�7.2 The ground state  of helium

�7.3 The hydrogen molecule ion



Suppose you want to calculate the ground-state energy         

for a system described by the Hamiltonian        ,  but  you are 

unable to solve the (time-independent)                        equation

g
E

..

schr o dinger

H

What should you do ?



7.1 Theory

Theorem:Theorem:

HHEg ≡ΨΨ≤

is any normalized function

That is, the expectation value of        in the (presumably 

in correct) state       is certain to overestimate the ground-state

energy. Of course, if       just happens to be one of the excited 

states, then obviously         exceeds         .
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ProofProof

Since the (unknown) eigenfunctions of       form a complete 

set ,we can express        as a linear combination of them: 
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Meanwhile,

Since ng EE ≤ ,we get 
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Which is what we were trying to prove.



To find the ground-state energyAim

Processes

ExamplesExamples

Processes

Step 1.      Select a trial wave function

Step 2.      Calculate          in this state

Step 3.      Minimize  the 

Step 4.     Take          as the appropriate ground-state energy

H

H
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minH



Example 1.
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To find the ground-state energy for the one-dimensional 

harmonic oscillator:
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Of course, we already know 

the exact answer (see chapter 

2):
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Pick a Gaussian function as our trial state 
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The mean value of         is H
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We can get the tightest bound through minimizing         withH
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Example 2.

To look for the ground state energy of the delta-function potential:
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Again ,we already know the 

exact answer (see chapter 2):
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The mean value of         is H

We also Pick a Gaussian function as our trial state: 
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Minimizing  it,
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which is indeed somewhat higher than gE ,since 2>π
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Example 3.

To find an upper bound on the ground-state energy of  

the one-dimension infinite square well, using the “triangular” 

trial wave function (figure 7.1):

( )xΨ

Figure 7.1: “triangular” trial wave function 

for the infinite square well 
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Where     is determined by normalization:A

In this case

The derivative of this step function is a delta function (see 

problem 2.24b)
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The exact ground state is                      ( see chapter 2),  so

the theorem works (                )
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�write down a trial wave function

The variational principle is very powerful and easy to use

Advantages

Conclusions

�Calculate

�tweak the parameters to get the lowest possible value

H

Even if      has no relation to the true wave function, one

often gets miraculously accurate values for

Ψ

gE



Limitations

It applies only to the ground state 

You never know for sure how close you are to the targetYou never know for sure how close you are to the target

and all you can certain of is that you have got an upper

bound.



7.2     The ground state of helium

Our task:

�To calculate the ground–state  energy by using the

Variational Principle

(experimental)   ev  975.78−=gE

� Theoretically reproduce the value : 



Figure 7.2:the helium atom
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The Hamiltonian for the helium atom system (ignoring 

fine structure and small correction) is
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Consequently ,the energy that goes with this simplified 

picture is                               (see Chapter 5  ).8 109  ev   E = −

If we ignore the electron-electron repulsion        is, the 

ground-state wave function is just

eeV

where         is hydrogen-like wave function with            .      
100Ψ 2=Z

picture is                               (see Chapter 5  ).
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In the following we will apply the variational principle ,

using the        as the trial wave function. The eigenfunction of 

Hamiltonian  is:

0Ψ



Thus 
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To get the above  integral value conveniently, we do the 
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integral first and orient the      coordinate system so that the 

polar axis lies along (see Figure 7.3).
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and hence
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Figure 7.3:  choice of coordinate for the           

integral 
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Finally , then,
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And therefore

Not bad , but we 

can do better!



Can we think of a more realistic trial function 

than
0Ψ ??



We try the product function
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and treat Z  as a variable rather than setting it equal to 2.

The idea is that as each electron shields the nuclear charge The idea is that as each electron shields the nuclear charge 

seen by the other ,the effective  Z  is less  than 2.

In the following, we will treat Z as a variational parameter, 

picking the value that minimizes         .H



Rewrite      in the following form:H
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And according to Chapter 6, we know 
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that instead of             ,we now want arbitrary Z—so we 
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Putting all this together, we find 
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The lowest upper bound occurs when          is minimized:H
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Much  nearer  to experimental value!



7.3     The hydrogen molecule ion
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Figure 7.4 :the hydrogen molecule ion,       .
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To construct the trial wave function , imagine that the ion is 

formed by taking a hydrogen atom in its ground state  

a
r

g e
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and then bringing in proton from far away and nailing it down a 

distance R away. If  R is substantially greatly than the Bohr radiusdistance R away. If  R is substantially greatly than the Bohr radius

a, the electron’s wave function probably isn’t changed very much. 

But we would like to treat the two protons equally ,so that the electron

has the same probability of being associated with either one. So we 

consider a trial function of the form 
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Normalize this trial function:
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Picking coordinates so that the pronton 1 is at the origin and 

proton 2 is on the z-axis at the point R (Figure 7.5),we have
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Figure 7.5: coordinates for the  

calculation of I
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In the terms of     , the normalization factor isI
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Next we must calculate the expectation value of       in the

trial state     . Noting that
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hydrogen and the same with        in place of        ,we have
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It follows that
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Calculate the two remaining quantities ,the so-called direct integral,

and the exchange integral,
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Putting all this together, and recalling that

we conclude that
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This is only the electron’s energy----there is also potential energy 

associated with the proton-proton repulsion:
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Figure 7.6:    plot of the function           ,showing existence of

a bound state.
)(xF

Evidently bonding does occur, for there exists a region in which the graph 

goes below -1,indicating that the energy is less than that of a neutral atom plus 

a free proton (to wit,              ).The Equilibrium separation of the protons is 

about  2.4 Bohr radii,  or .
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