)5

Quantum mechanics

School of Physics and Information Technology

Shaanxi Normal University

= i " SHAANXI NORMAL UNIVERSITY




Chapter 9

Time-dependent

perturbation theory




Chapter 9

Time-dependent perturbation theory




9.2 Emission and absorption

of radiation

9.3 Spontaneous emission




Suppose that there are just two states of the system. They are
eigenstates of the unperturbed Hamiltonian,and they are eigenstates

orthonormal:

Any state can be expressed as a linear combination of them

In the absence of any perturbation,each component evolves with its
characteristic exponential factor:
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Now suppose we turn on a time-dependent perturbation,

then the wave function can expressed as follows:

If the particle started out 1n the state We solve for

So, we find that
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The first two terms on the left cancel the last two terms on

the right, and hence




For short, we define
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In that case the equations simplify




c (0)=1, ¢,(0)=0.

Zeroth Order:




First Order:

—%Hl;aei“’of <”_—— j H, (1 e dt

Now we 1nsert these expressions on the right to obtain the

second-order approximation:
Second-Order:

| N I (A S
cf)(t):l—?joHab(t )e UO H, (t)e'™ dt }dz







9.1.3 Sinusoidal Perturbation

Suppose the perturbation has sinusoidal time dependence:
H (¥,t) =V (¥)cos(wt)
so that H, 6=V

ab

where V., = <% |V | %>
To first order we have

cos(ar),

cb(t):—% - j cos(ar )e'™ "

— lVba J't|:€i(a)0+a))t' 4+ el’(woa))fy:|dt'
2h 70

V |:€i(a)0+a))t _1 ei(a)()—a))z _1:|
ba

_|_
W, + W, — W

2h

This 1s the answer, but it is a little cumbersome to work with.




Dropping the first term:

Weassune @) +w>3 @) — )

V ei(ag)—a))t/z
(a)—w)t/2 —i(ay—w)t/?2
Cb(f)E ba ez(ag) W)t p i(ay—w)t :|

2 @—-w

_ iVba sin(a) —ait /2] @2
n Q) —Q
The transition probability——the probability that a particle which
started out 1n the state {7 will be found, at time, 1n the state ¥ :
IV, > sin’[(@)—a)t/ 2]
h2 ( ((-6 N (())2

P_ ¢ 0l=

(2)




sinusoidally.

Fig. 1 Transition probability as a function of time,
for a sinusoidal perturbation
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The probability of a transition is greatest when the
driving frequency is close to the “natural”
frequency

Fig. 2 Transition probability as a function of driving frequency




9.2 Emission and absorption
of radiation

9.2.1 Electromagnetic Waves
An atom, 1n the presence of a passing light wave, responds
primarily ot the electic component. If the wavelenght 1s long
, we can 1gnore the spatial variation in the field; the atom 1s
exposed to a sinusoidally oscillating electric field

E=E, cos(wr)k

The perturbing Hamiltonian 1s

H =—qE,zcos(mt)

where ¢ 1s the charge of the electron. Evidently

H, =—@E,cos(wt), where 50:61<wb |z | %>




e 9.1 Two-level systems

e 9.3 Spontaneous emission




An electromagnetic wave consists of transverse
oscillating electric and magnetic fields.

Electric field

Magnetic field




Typically, ¥ 1s an even or odd function of z; 1n

either case zIlyl” is odd, and integrates to zero.

This licenses our usual assumption that the

diagonal matrix elements of // vanish. Thus
the interaction of light with matter 1s governed

by precisely the kind of oscillatory perturbation
with




9.2.2 Absorption, Stimulated Emission,

and Spontaneous Emission
If an atom starts out in the "lower" state ¥ _, and you
shine a polarized monochromatic beam of light on it,
the probability of a transition to the "upper" state ¥,
1s given by Equation (2), which takes the form

1@ | E, jz sin’[(@, — )t /2]
h* (0, — W)’

})a%b (t) - (

Of course, the probability of a transition down to

to the lower level:

" sin’[(w, — W)t /2]
(a)() _ C{))




(a) Absorption
In this process, the atom absorbs energy
E, -E, =hw, from the electromagnetic field.

we say that 1t has "absorbed a photon”

(a) Absorption
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(b) Stimulated emission
If the particle 1s 1in the upper state, and you shine
light on 1t, it can make a transition ot the lower state,
and 1n fact the probability of such a transition is exactly
the same as for a transition upward from the lower state.
which process, which was first discovered by Einstein,

1s called stimulated emission

(b) Stimulated emission




(¢) Spontaneous emission
If an atom 1n the excited state makes a transition

downward, with the release of a photon but without

any applied electromagnetic field to initiate the process.

This process 1s called spontaneous emission.

(c) Spontaneous emission




9.2.3 Incoherent Perturbation
The energy density in an electromagnetic wave 1s
E
u=-—"F

2
where E 1s the amplitude of the electric field. So the

transition probability 1s proportional to the energy
density of the fields:

2U sin’[(@, —w)t /2]
P (1) = | @I 0
Cl%b( ) 8Oh2 (@ (a)o N a))Q

This 1s for monochromatic perturbation, consisting of

a single frequency @.




In many applications the system 1s exposed to electromagnetlc
waves at a whole range of frequencies; in that case u — p(@)d w
and the net transition probablity takes the form of an integral:

Igolzj (@) sin“[(a@), —w)t /2]

: dw
80 (@, —w)

replace p(w) by p(@),) and take 1t outside the integral, we get
2I50I2  S1N [(a) — )t/ 2]

(a)() _ a))

dw

P, () =—"p@)|

Changing Vanables to x = (@), — )/ 2, extending the limits of

integration to x = oo, and looking up the define integral

dx =71

J'oo Sln X

_oox




we find

This time the transition probability 1s proportional ot ?.
When we hit the system with an incoherent spread of
frequencies. The 1S NOW a constant :

T

Rbea _ gohz |80|2 p(wo)

the perturbing wave 1s coming in along the

x-direction and polarized 1n the z-direction.




But we shall be interested in the case of an atom
bathed 1n radiation coming from all direction,

and with all possible polarizations. What we

need, in place of | I”,is the averageof | 1-@ I,
P 8

where

QEQ<Wb|?|Wa>

and the average is over both polarizations (77) and

over all incident direction. This averaging can be

carried out as follows:




Polarization:

For propagation 1n the z-direction, the two possible

polarizations are / and/, so the polarization average

1S

A 2 | -~ 0 ? o)
(- ), = 5[(1-50) +(j-§)"]

1 2 2 1 2 s 2
= — (@ + )=—g sin" 6
5 (9, +49)) 5 §
where 6 1s the angle between ( and the direction of

propagation.




Propagation direction:
Now let's set polar axis along ¢ and integrate over all
propagation directions to get the polarization-propagation

average.

(ﬁ-go)ip— L [ (" sin 6’}81n9d9d¢

A1

2 p
=¥ ["sin* a9 =2
Pl 3

So the transition rate for stimulated emission from state
b to state a, under the influence of incoherent, unpolarized

light incident from all directions, 1s




So the transition rate for stimulated emission from

state b to state ¢, under the influence of incoherent,

unpolarized light incident from all directions, 1S

R —
b%a 3 h2

Where @ 1s the matrix element of the electric

pl" p(@)

dipole moment between the two states and p(@))

1s the energy density 1n the fields, per unit frequency,
evaluated at @) =(E, —E )/ 7.
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9.3.1 Einstein's A and B coefficients

Picture a container of atoms, NV of them in the lower
state (), and N, of them 1n the upper state (¥, ).
Let A be the spontaneous emission rate, so that the
number of particle leaving the upper state by this
process, per unit time, 1s V, A . The transition rate for

stimulated emission 1s proportional to the energy

density of the electromagnetic field---call it B, p(@,).

The number of particles leaving the upper state by this

mechanism, per unit time, 1s N, B, p(@,).




The absorption rate i1s likewise proportional to

p(a,)---call it B , p( @), ); The number of particles

per unit joining the upper level 1s therefore
N B p(w,). All told, then,
dN,

dt
Suppose that these atoms are in thermal equilibrium

— _NbA B NbBbalO(a)O) + NaBabIO(a)O)

with the ambient field, so that the number of particle

1n each level 1s constant.




In that case
dN, /dr =0, and 1t follows that
A
(Na /Nb)Bab N Bba

The number of particles with energy £, in thermal

p(@,) =

equilibrium at temperature 7', 1s proportional to

, SO

_ELI /kBT
€ hay kT

 —E [k.T
Nb e a B

and hence

A
pP(@,) = o107

ab Bba
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But Planck's blackbody formula

tells us the energy density of thermal radiation:

5 @’

p(w) =
1203 oM _ B

ba
Comparing the two expressions, we conclude that
3
h
B,=B, and A=-—2"B

ab ~— “ba 2 3 ba
C

and

and it follows that the spontaneous emission rateis

3..2
A=-98
3ze hc




0.3.2 The Lifetime of an Excited State

Suppose, now, that you have a bottle full of
atoms, with V, (7), of them in the excited state.
As a result of spontaneous emission, this number

will decrease as time goes on; specifically, in a
time interval dr you will lose a fraction of Adr
them:

dN, =—AN, dt
Solving for N, (1), we find

N,(t)=N,(0)e™™




evidently the number remaining in the excited

state decreases exponentially, with a time constant

T=—
A

We call this the lifetime of the state ---- technically,

it 1s the time it takes for N, (7) to reach of its
l/e = 0.368 1nitial value.

This spontaneous emission formula gives the
transition rate for Y, — VW, regardless of any

other allowed states.




evidently the number remaining in the excited

state decreases exponentially, with a time constant

T=—
A

We call this the lifetime of the state ---- technically,
it 18 the time 1t takes for N,(7) to reach of its
I/e = 0.368 1nitial value.

This spontaneous emission formula gives the
transition rate for W, — W, regardless of any

other allowed states.




Typically, an excited atom has many different decay

modes ( that1s, i, can decay to a large number of
different lower-energy states, v v ., .---). In that

case the transition rates add, and the net lifetime 1s

1
A+A+A+--

T =

While

<n|x|n'>=\/—(\/75nn +\/_5M1

where @ 1s the natural frequency of the oscillator.




But we're talking about emission, so n

must be lower than n; for our purpose, then,

P =q nh_5 i
2mw n,n —1

Evidently transitions occur only to states one step
lower on the "ladder", and the frequency of the photon

emitted 1s

oo LBy (1 2)hB—(n +1/2)h @
7 7

=(n —-nw=0

Not surprisingly, the system radiates at the classical

oscillator frequency.




But the transition rate 1s
ng’w’
67t€,mc”

A=

h

and the lifetime of the n™ stationary state is

~ 67g,mc’

TI/Z
ng @’

Meanwhile, each radiate photon carries an energy 7 @,
so the power radiated 1s A% w:
2 .2
4,
p=_1
oTe mc

- (nhw)




or, since the energy of an oscillator

"stateis E = (n+1)hwo,

in the n'
2 2
q @ |
. (E—Eha))

P =
o7TE, mc

For comparison, let's determine the average power
radiated by a classical oscillator with the same energy

According to Larmor formula:




For a harmonic oscillator with amplitude

x,.x(1) = x,cos(wt), and the acceleration 1s
a = —x,w cos(wt). Averaging over a full cycle,
then

B q2x0w4

P 3
127e,c

But the energy of the oscillatoris £ = (1/2)m’ x,,
so x; = 2E /m®’,and herenc
q2x0w4

P_

= ; E
oze mc




9.3.3 Selective Rules
The calculation of spontaneous emission rates has
been reduced to a matter of evaluating matrix elements

of the form

<Wb|f|Wa>

Suppose we are interested 1n systems like hydrogen, for
which the Hamiltonan 1s spherically symmetrical. In that
case we may specify the states with the usual quantum

numbers 72, [, and 7, and the matrix elements are

<n'l'm' |7 | nlm>




Consider first the commutations of /. with x, y, and z,
which we worked out in Chapter 4:

[L,x] =iny, [L,y]l =ihx, [L,z] =0.
From the third of these it follows that

0= <nlm I[L,,z]l nlm>

=(nl'm |(Lz—zL)|nlm)
= <nlm [[((mh)z—z(mh))| nlm>
=(m —m)k <n'l mlzl nlm>




Either m =m, or else <n'l mlzl nlm> =)

So unless 72 = m, the matrix elements of z are
always zero.
Meanwhile, from the commutator of /. with x

we get

<n'l'm' [[L.,x]l nlm> = <nlm | (L.x—xL)| nlm>

=(m —m)h<n'l'm' | x| nlm> = ih<n'l'm' |yl nlm>




(m —m) <nlm | x | nlm> = i<n'l'm' |yl nlm>

Finally, the commutator of L. with y yields
<n'l'm' I[L ,y]l nlm> = <nlm [(L,y—yL )| nlm>

=(m —m)h <nlm |yl nlm> =1h <nlm | x| nlm>

(m —m)<n'l'm' |yl nlm> = i<n'l'm' | x | nlm>
and
(m —m)” <nlm | x | nlm> =i(m —m) <nlm |y nlm>

= <nlm | x | nlm>
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and hence

either (m —m)” =1,or else

<n'l'm' | x | nlm> = <nlm |y nlm> =0

From Equations (1) and (2), we obtain the selection
rule for m:

No transitions occur unless Am = *1 or 0
This 1s an easy result ot understand 1f you remember
that the photon carries spin 1, and henc 1ts value of
m 1s 1, 0, or -1; conservation of angular momentum
requires that the atom give up whatever the photon

takes away.




The commutation relation:
(L[, 7]] =2h°(FL” + L°F)
As before, we sandwich this commutation between

<n'l m ‘ and ‘nlm> to derive the selection rule:

<n'l'm' | [Lz,[LZ,F]] | nlm>

= 27> <nlm | (FI? — IF) | nlm>

=2 I+ D)+ (I +1)]<n'z'm' |7 | nlm>
= <nlm (L2127 —[12, 7|12 nlm>
“' A+ D)+ I +DT <nlm 17 | nlm>




Either 2[[({+ 1)+ (I + )] =[l (I +1)—=I(+D]

or else <nlm |7 | nlm>:0

But
([ +D)=I1(+D]=U +1 +D({ +1)
and
QML +D)+1 (1 +D)]=( +1 +1D)*+({ =1)* -1
so (I +1+1)°+{ —-1)*—-1=0
The first factor cannot be zero, so the condition

simplifies to [ =/=+1.




No transitions occur unless Al = *1

Again, this result 1s easy to interpret: The

photon carries spin 1, so the rules for addition

of angular momentum would / =/+1,/ =/ or

[ =1-1.
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Allowed decays for the first four Bohr |

evels in

hydrogen
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n=4
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