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9.1 Two-level systems
Suppose that there are just two states of the system. They are 

eigenstates of the unperturbed Hamiltonian,and they are eigenstates 

orthonormal:
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Any state can be expressed as a linear combination of them
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In the absence of any perturbation,each component evolves with its 

characteristic exponential factor:
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9.1.1 The perturbed system

Now suppose we turn on a timeNow suppose we turn on a time--dependent perturbation, dependent perturbation, 

then the wave function can expressed as follows:then the wave function can expressed as follows:
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The first two terms on the left cancel the last two terms on 

the right, and hencethe right, and hence
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For short, we define
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In that case the equations simplify
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9.1.2  Time-Dependent Perturbation Theory

So far, everything is exact: we have made no assumption about 

the size of the perturbation. But if  is "small", we  can solve 

Equation (1) by a process of successive approximations, as 

follows.  Sup

'
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To calculate the first-order approximation, we insert these values

on the right side of Equation (1)
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Notes:
(2)Notice that in my notation ( )  includes the zeroth order 

term; the second-order correction would be the integral term

alone.
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9.1.3  Sinusoidal Perturbation9.1.3  Sinusoidal Perturbation

'

'

( , ) ( ) cos(

Suppose the perturbation has sinusoidal time dependence:

so

                         

            that

where 

To first o

     

       

)

cos

    

rder

 

 we have

   

( ),

| |

ab ab

ab a b

H r t V r t

H

 

V t

V

 

V

ω

ω

ψ ψ

=

=

=

v v

   
' '

0

' '
0 0

0 0

'

0

( ) ( ) '

0

( ) ( )

0 0

( ) cos( )

                    

       

This is the ans

  
2

1 1
                    

wer, but

  =
2

 i

 

t

   

 i

t
i t dt

b ba

t
i t i tba

i t i t

ba

i
 c t V t e

iV
 = - e e dt

V e e
-

ω

ω ω ω ω

ω ω ω ω

ω

ω ω ω ω

+ −

+ −

≅ −

 +
 

 − −
+ 

+ − 

∫

∫

h

h

h

s a little cumbersome to work with.



Dropping the first term:
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As a function of time, the transition probability oscillates 

sinusoidally.
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Fig. 1 Transition probability as a function of time, 

for a sinusoidal perturbation



The probability of a transition is greatest when the 

driving frequency is close to the “natural” 

frequency
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Fig. 2 Transition probability as a function of driving frequency



9.2 Emission and absorption 

of radiation
9.2.1 Electromagnetic Waves

An atom, in the presence of a passing light wave, responds

primarily ot the electic component. If the wavelenght is long

, we can ignore the spatial variation in the field; the atom is 

exposed to a sinusoidally oscillating electric field
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An electromagnetic wave consists of transverse 

oscillating electric and magnetic fields.

An electromagnetic  
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Typically,  is an even or odd function of  ;  in 

either case   is , and integrates to zero. 
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If an atom starts out in the "lower" state ,  and 
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 Three ways  in which light interacts with atoms:

        In this process, the atom absorbs energy 

from the electromagnetic field. 

we say that 
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      The energy density in an electromagnetic wave is
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In many applications the system is exposed to electromagnetic

waves at a whole range of frequencies; in that case

and the net transition probablity takes the form of an integral:
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9.3  Spontaneous emission

Picture a container of atoms,  of them in the lower 

state , and  of  them  in  the  upper  state . 

Let  be  the  spontaneous  emission rate,  so 
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        Suppose, now, that you have a bottle full of

 atoms,   with of them in the excited state.
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        The calculation of spontaneous emission  rates has 

been reduced to a matter of evaluating matrix  elements 
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Allowed decays for the first four Bohr levels in 

hydrogen


