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Chapter 4

QUANTUM MECHANICS IN
THREE DIMENSIONS

4.3 Angular momentum
4.4 Spin




4.1 Schrodinger Equation in Spherical Cordinations

(1) The generalization of the Schrodinger Equation from one-
dimensional to three-dimensional is straightward. The SE says

the Hamiltonian operator H is obtained from the classical energy

by the standard prescription (applied now to y,z as well as x)




or, for short

where is the Laplacian, in

Cartesian coordinates.




And in 3-dimensional space

as well as

(2) The probability of finding the particle in the infinitesimal volume d°r,
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(3) Therefore the normalization condition reads




(4) If the potential 1s time-independent, the time-independent Schrodinger
equation reads

and there will be a complete set of stationary states

The general solution to the (time-dependent) Schrodinger equation is




4.1.1 Separation of Variables

(1) Spherical coordinates

Cartesian coordinates:

Spherical coordinates:

In spherical coordinates the Laplacian takes the form




The time-independent Schrodinger equation in Cartesian coordinates

In spherical coordinates

We begin by looking for solutions that are separable into products:

Putting this into above equation, we have




Dividing by RY and multiplying by

The term on the left hand depends only on r, whereas the right depends only on 0
¢; accordingly, each must be a constant, which is in the form I(1+1):
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4.1.2 The Angular Equation

Equation 4.17 determines Y function as

Multiplying above equation by Ysin’0, it becomes:

As always, we try separation of variables:

Plugging this in, and dividing by Y, we find




The first term is a function only of 0, and the second is a function only of , so
each must be a constant. This time I will call the separation constant m”:

(1) The equation is easy to solve:




Now, when advances by 27, we return to the same point in space, so it is
natural to require that

In other words,

From this it follows that m must be an integer:

(2) The  equation is not simple.




Turn  1into x by:

Above equation is /th-order associated Legendre equation.

Therefore, the solution of ® is

where P, 1s the associated Legendre function, defined by




and P/(x) 1s the /th Legendre polynomial, defined by the Rodrigues formula:

P/(x)1s a polynomial (of degree /) in x, and 1s even or odd according to the parity
of L




But for associated Legendre function P”:

1s not, in general, a polynomial if m 1s odd it carries a factor of

not a polynomial
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Some Notes:

(1) Notice that / must be a nonnegative integer, for the Rodrigues formula
to make any sense.

If Iml|>/, then P/"=0. Therefore, for any given /, there are (2/+ 1) possible

values of m:




(2) Now, the volume element in spherical coordinates is

so the normalization condition becomes

It is convenient to normalize R and Y separately:

where R determined by V(r) and Y can be obtained.




The normalized angular wave functions are called

Now we list here some few spherical harmonics: See book for more




Notice that

Actually, the Y's are automatically orthogonal, so

For historical reasons, / is called the azimuthal quantum number, and m
the magnetic quantum number.




4.1.3 The Radial Equation

Notice that the angular part of the wave function, Y(0, @), is the same for all
spherically symmetric potentials; the actual shape of the potential, V(7), affects
only the radial part of the wave function, R(r), which is determined by
Equation 4.16:

This equation can be simplified if we change variables as

so that ///////”_\\\\\\\




and hence

This 1s called the radial equation; it is identical in form to the one-dimensional
Schrodinger Equation , except that the effective potential,

contains an extra piece, the so-called centrifugal term, . It tends
to throw the particle outward (away from the origin), just like the centrifugal
(pseudo-) force in classical mechanics. Meanwhile, the normalization condition
becomes

—




The infinite spherical well. S

Find the wave function and the allowed energies. &\\

Solution:
1. Outside the well, the wave function is zero: u(rr=a or r>a)=0.

2. Inside the well, the radial equation reads

where

(1) The case /=0 is easy:




Then the solution is

As the second term blows up, so we must choose B=0.

—

The boundary condition then requires that

=

The allowed energies are evidently

—

which is the same for the one-dimensional infinite square well.




The normalization condition:

yields

Tacking on the angular part (/=0,m=0)

we conclude that




(2) The case [ 1s 1n any integer:

The general solution of above equation is:

where j,(kr) 1s the spherical Bessel function of order [, and n,(kr) 1s the
spherical Neumann function of order /. They are defined as follows:




Spherical Bessel function: Spherical Neumann function




The asymptotic properties of two functions :

Generally, for small x, we have

Proof: For small x,




As when x>0, Neumann functions blow up, that 1s

in the general solution, we must set B=0,

and hence

The boundary condition then requires that R(a)=0. Evidently £ must be chosen
such that

that 1s, (ka) 1s a zero of the /th-order spherical Bessel function. Now, the Bessel
functions are oscillatory; each one has an infinite number of zeros. However,
unfortunately for us, they are not regularly located and must be computed
numerically. At any rate, if we suppose that




the boundary condition requires that

where / ; is the nth zero of the /th spherical Bessel function. The allowed

energies, then, are given by

and the wave functions are

with the constant A

to be determined by normalization. Each energy level
1s (2/+1)-fold degenerate, since there are different values of m for each
value of /.
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4.2 The Hydrogen Atom

The hydrogen atom consists of a heavy, essentially motionless proton, of
charge e, together with a much lighter electron (charge —¢) that orbits around
it, bound by the mutual attraction of opposite charges.

From Coulomb’s law, the potential
energy (in SI units) is

Then the radial equation for hydrogen atom says




Our problem is to solve this equation for u(7), and determine the allowed
energies, . Now we consider this problem in detail by using analytical
method.

Incidentally, Coulomb potential, admits two different states,

continuous states and bound states, which are separately corresponds to the
following situations:

continuous states E>0, bound states E<()

describing electron-proton

: representing Hydrogen atom
scattering p & Hyarog




4.2.1 The Radial Wave Function

The radial equation for Hydrogen atom is

As E<0, then we let

Dividing above equation by £, we have

This suggests that we introduce




In this case, the constant term in the bracket of above equation dominates, so
(approximately)

The general solution of it is




but the second term blows up as , s0 B=0. Evidently,

‘ for large

In this case, the centrifugal term dominates; approximately, then:

=

The general solution of it is




But for p—0, the term p” blows up, so D=0. Thus

‘ for small
v(p)

The next step is to peel off the asymprotic behavior, introducing the new
function v(p):

in the hope that v(p) will turn out to be simpler than u(p). Then




In terms of v(p), then, the radial equation of u(p) reads

=

Finally, we assume the solution, v(p), can be expressed as a power series in p:




Now replace v(p) into equation and our problem is to determine the coefficients
of the series, c,.c,.c;, ... . Differentiating term by term:

Differentiating again,

Inserting these into Equation 4.61, we have




where

Equating the coefficient of like powers yields




This recursion formula determines the coefficients, and hence the function

v(p) : We start with ¢, and recursion formula gives us c¢,; putting this back in,
we obtain ¢,, and so on.

At last, after ¢, being fixed eventually by normalization, the solution of v(p)
and u(p) will be got.

If j 1s very large, that is j—o0, the recursion formula says




and hence

which blows up at large p—c0 and 1is not permitted because the solution will not

be properly normalized. In order to satisfy the normalization condition, there is
only one way out of this dilemma: 7he series must terminate. There must occur
some maximal integer, j, ., such that

Evidently, from recursion formula




-

Defining , which is the so-called principle quantum number,
we have




so the allowed energies are

This is the famous Bohr formula by any measure the most important
result in all of quantum mechanics. Bohr obtained it in 1913 by a serendipitous

mixture of inapplicable classical physics and premature quantum theory.

And we also find that

1s the so-called Bohr radius.




It follows that

Finally, the spatial wave functions of hydrogen are labeled by three quantum
numbers ([, and m):

and v(p) 1s a polynomial of degree j, .= n-/-1 in p, whose coefficients are
determined by the recursion formula




The ground state (that is, the state of lowest energy) is the case n=1; putting in
the accepted values for the physical constants, we get

Evidently the binding energy of hydrogen (the amount of energy you would

have to impart to the electron in the ground state in order to ionize the atom) is

13.6 eV. As the principle quantum number n=1=; _ +/+1, the angular quantum
number must be zero (/=0), whence also =0, so the wave function is




Normalizing R, by

we have

—

Meanwhile, V= , and hence the ground state of hydrogen is




If n=2 the energy is

This is the first excited states, since we can have either /=0 (in which case
m=0) or /=1 (in which case m=-1, 0, or 1); Evidently there are four states
that share the same energy E..

, the recursion relation gives




Normalization
and therefore

. the recursion formula terminates the
series after a single term;

and we find Normalization




For arbitrary n, the possible values of / are

and for each [/ there are (2/+ /) possible values of 71, so the total degeneracy
of the energy level £, 1s

The polynomial v(p) (defined by the recursion formula Eq.4.76 1s a function
well known to applied mathematicians; apart from normalization, it can be
written as




is the associated Laguerre polynomial, and

is the gth Laguerre polynomial.

Therefore the radial wave function 1s

Examples:

J‘ Normalization




\

: Normalization
Generally, we can normalize R, as

to give normalized R, , as follows

nl

with normalization constant NV, , being
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Figure 4.4: Graphs of the lirst few hydrogen radial wave functions, R (r).




Then, finally, the normalized hydrogen wave function are

Notice that whereas the wave functions depend on all three quantum numbers,
the energies are determined by n alone. This 1s a peculiarity of the Coulomb
potential; generally, the energies depend also on /.

The wave functions are mutually orthogonal

Visualizing the hydrogen wave functions is not easy. See book!




See the figures of solutions of

Hydrogen atom




4.2.2 The Spectrum of Hydrogen

In principle, if you put a hydrogen atom into some stationary statey,, , it
should stay there forever. However, if you rickle it slightly (by collision with
another atom, say, or by shining light on it), the electron may undergo a
transition to some other stationary state either by absorbing energy, and
moving up to a higher-energy state, or by giving off energy (typically in the
form of electromagnetic radiation), and moving down.

In practice such perturbations are always present; transitions (or, as they are
sometimes called, “quantum jumps ”’) are constantly occurring, and the result
1s that a container of hydrogen gives off light (p/iotons), whose energy
corresponds to the difference in energy between the initial and final states:




Now according to the Planck formula, the energy of a photon is proportional
to its frequency:

Meanwhile, the wavelength is given by

=




1s known as the Rydberg constant. Above equation is the Rydberg formula for
the spectrum of hydrogen; it was discovered empirically in 19" century, and
the greatest triumph of Bohr’s theory was its ability to account for this result—
—and to calculate R in terms of the fundamental constants of nature.

Spectrum of Hydrogen:

Transitions to the ground state (1,=1) _ Paschen
lie in the ultraviolet; they are known _ seres
to spectroscopists as the Lyman series.

Transitions to the first excited state
(n,=2) fall in the visible region; they
constitute Balmer series.

E/RK %

Energy (eV)

Transitions to n,=3 (Paschen series)
are in the infrared region; and so on.
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These spectral lines are produces by
"exciting" gas atoms and molecules with
high voltage (about 5000 volts). This
energy kicks electrons to higher energy
levels where they are unstable and drop
back towards the ground state (lower
energy levels). As the electrons make this
downward transition, they release energy
in the form of visible light.




The emission and absorption spectrum of hydrogen in the
visible range is the following
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