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4.1 Schrödinger Equation in Spherical Cordinations

(1) The generalization of the Schrödinger Equation from one-

dimensional to three-dimensional is straightward. The SE says
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the Hamiltonian operator H is obtained from the classical energy 

by the standard prescription (applied now to y,z as well as x)
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Cartesian coordinates.
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(2) The probability of finding the particle in the infinitesimal volume d3r,

And in 3-dimensional space

as well as
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(4) If the potential is time-independent, the time-independent Schrodinger 

equation reads
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and there will be a complete set of stationary states
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The general solution to the (time-dependent) Schrodinger equation is
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4.1.1 Separation of Variables

(1) Spherical coordinates

Cartesian coordinates: ( )zyx ,,

( )φθ ,,rSpherical coordinates:
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In spherical coordinates the Laplacian takes the form
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The time-independent Schrodinger equation in Cartesian coordinates

In spherical coordinates
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We begin by looking for solutions that are separable into products:
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Putting this into above equation, we have
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22 /2 hmr−Dividing by RY and multiplying by 
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The term on the left hand depends only on r, whereas the right depends only on θ The term on the left hand depends only on r, whereas the right depends only on θ 

φ; accordingly, each must be a constant, which is in the form l(l+1):
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4.1.2 The Angular Equation

Solution of Y : Equation 4.17 determines Y function as

Multiplying above equation by Ysin2θ, it becomes:
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As always, we try separation of variables:
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Plugging this in, and dividing by Y, we find
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The first term is a function only of θ, and the second is a function only of    , so 

each must be a constant. This time I will call the separation constant m2:
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(1) The      equation is easy to solve:
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Now, when         advances by 2π, we return to the same point in space, so it is 

natural to require that
φ
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From this it follows that m must be an integer:

L,3,2,1,0 ±±±=m

(2) The      equation is not simple.θ
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Turn      into x by:θ θcos=x
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Above equation is lth-order associated Legendre equation.

Therefore, the solution of Θ is
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l is the associated Legendre function, defined by

),()1()(

||

2/||2
xP

dx

d
xxP l

m

mm

l 







−≡



and Pl(x) is the lth Legendre polynomial, defined by the Rodrigues formula:
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�Pl(x) is a polynomial (of degree l) in x, and is even or odd according to the parity

of l.



is not, in general, a polynomial——if m is odd it carries a factor of
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(1) Notice that l must be a nonnegative integer, for the Rodrigues formula 

to make any sense. 

Some Notes:
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(2) Now, the volume element in spherical coordinates is  

so the normalization condition becomes

1sinsin
22222

=⋅= ∫∫∫ φθθφθθψ ddYdrrRddrdr

,sin23 φθθ ddrdrrd =

It is convenient to normalize R and Y separately:It is convenient to normalize R and Y separately:

,1
0

22
=∫

∞

drrR ,1sin
2

0 0

2
=∫ ∫

π π

φθθ ddY

where R determined by V(r) and Y can be obtained.

( ) );1()(
21

2

2
2 +=








−−








llErV

mr

dr

dR
r

dr

d

R h



The normalized angular wave functions are called spherical harmonics:
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Actually, the Ys are automatically orthogonal, so
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For historical reasons, l is called the azimuthal quantum number, and m

the magnetic quantum number.



Notice that the angular part of the wave function, Y(θ,Φ), is the same for all

spherically symmetric potentials; the actual shape of the potential, V(r), affects

only the radial part of the wave function, R(r), which is determined by

Equation 4.16:

This equation can be simplified if we change variables as

4.1.3 The Radial Equation
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This is called the radial equation; it is identical in form to the one-dimensional 

Schrödinger Equation , except that the effective potential,
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contains an extra piece, the so-called centrifugal term,                          . It tends 

to throw the particle outward (away from the origin), just like the centrifugal 

(pseudo-) force in classical mechanics. Meanwhile, the normalization condition 

becomes
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The infinite spherical well:

Find the wave function and the allowed energies.

Solution:

1. Outside the well, the wave function is zero: u(r,r=a or r>a)=0.
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1. Outside the well, the wave function is zero: u(r,r=a or r>a)=0.

,
)1( 2

22

2

uk
r

ll

dr

ud








−

+
=

2. Inside the well, the radial equation reads
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The normalization condition:                            
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Notice that the stationary states are labeled by three quantum 

number, n, l and m: ψnlm. The energy, however, depends only on 
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(2) The case l is in any integer:

The general solution of above equation is:
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where j (kr) is the spherical  Bessel function of  order l, and n (kr) is the 
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Spherical  Bessel function:
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Spherical  Neumann function
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The asymptotic properties of two functions : 
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,1)(lim 0
0

=
→

xj
x

L,
3

)(lim 1
0

x
xj

x
=

→

,
1

)(lim 0
0 x

xn
x

−=
→

L,
1

)(lim
21

0 x
xn

x
−=

→

l

( ) !!12
)(lim

0 +
=

→ l

x
xj

l

l
x

( )
.

!!12
)(lim

10 +→

−
−=

ll
x x

l
xn

Proof: For small x,

L+−+−≈
!7!5!3

sin
753

xxx
xx

L+−+−≈
!6!4!2

1cos
642

xxx
x
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As when x�0, Neumann functions blow up, that is

we must set B=0, 

and hence
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The boundary condition then requires that  R(a)=0. Evidently k must be chosen The boundary condition then requires that  R(a)=0. Evidently k must be chosen 
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that is, (ka) is  a zero of the lth-order spherical Bessel function. Now, the Bessel 

functions are oscillatory; each one has an infinite number of zeros.  However, 
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where βnl is the nth zero of the lth spherical Bessel function. The allowed 
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with the constant Anl to be determined by normalization.  Each energy level 

is (2l+1)-fold degenerate, since there are  different values of m for each 
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The hydrogen atom consists of a heavy, essentially motionless proton, of 

charge e, together with a much lighter electron (charge –e) that orbits around 

it, bound by the mutual attraction of opposite charges.

From Coulomb’s law, the potential 

energy (in SI units) is
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4.2 The Hydrogen Atom
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Our problem is to solve this equation for u(r), and determine the allowed 

energies, E.  Now we consider this problem in detail by using analytical 

method.
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The radial equation for Hydrogen atom is

(1) Simplify it (tidy up):

4.2.1 The Radial Wave Function

.
)1(

2

1

42 2

2

0

2

2

22

Euu
r

ll

mr

e

dr

ud

m
=







 +
+−+−
hh

πε
(E<0)

1. Radial Solution:

(1) Simplify it (tidy up):
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(2) The asymptotic properties of the solution:
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But for ρ→0, the term  ρ-l blows up, so D=0. Thus
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(3) Introduce new function v(ρ) to simplify solution:

The next step is to peel off the asymptotic behavior, introducing the new 

function v(ρ):
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In terms of  v(ρ), then, the radial equation of u(ρ) reads
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(4) Solve above equation by power series method:

Finally, we assume the solution,  v(ρ), can be expressed as a power series in ρ:
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Now replace v(ρ) into equation and our problem is to determine the coefficients 

of the series, c1,c2,c3, … . Differentiating term by term:
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Differentiating again,

( ) .1 1

12

2

∑
∞

−
++= j

jcjj
d

vd
ρ

ρ
( ) .1

0

12 ∑
=

++=
j

jcjj
d

ρ
ρ

Inserting these into Equation 4.61, we have
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Equating the coefficient of like powers yields
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This recursion formula determines the coefficients, and hence the function 

v(ρ) : We start with c0, and recursion formula gives us c1; putting this back in, 

we obtain c2, and so on.

At last, after c0 being fixed eventually by normalization, the solution of v(ρ) 

and u(ρ) will be got.

2. Energies of the solutions:
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If j is very large, that is j→∞, the recursion formula says
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which blows up at large ρ→∞ and is not permitted because the solution will not 

be properly normalized. In order to satisfy the normalization condition, there is be properly normalized. In order to satisfy the normalization condition, there is 

only one way out of this dilemma: The series must terminate. There must occur 

some maximal integer, jmax, such that
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we get
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Defining                                   , which is the so-called principle quantum number, 
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This is the famous Bohr formula ——by any measure the most important 

result in all of quantum mechanics. Bohr obtained it in 1913 by a serendipitous 

mixture of inapplicable classical physics and premature quantum theory. mixture of inapplicable classical physics and premature quantum theory. 

And we also find that
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It follows that

3. The overall solutions of Hydrogen atom:

Finally, the spatial wave functions of hydrogen are labeled by three quantum 

numbers (n,l, and m):
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and v(ρ) is a polynomial of degree jmax= n-l-1 in ρ, whose coefficients are 

determined by the recursion formula
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(1) The ground state:

The ground state (that is, the state of lowest energy) is the case n=1; putting in 

the accepted values for the physical constants, we get
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Evidently the binding energy of  hydrogen (the amount of energy you would 

have to impart to the electron in the ground state in order to ionize the atom) is have to impart to the electron in the ground state in order to ionize the atom) is 

13.6 eV. As the principle quantum number n=1=jmax+l+1, the angular quantum 

number must be zero (l=0), whence also m=0, so the wave function is
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(2) The first excited states n=2:

If n=2 the energy is

.43
4

613

22

1
2 eV.

 eV.E
E −=−==

This is the first excited states, since we can have either l=0 (in which case 

m=0) or l=1 (in which case m=-1, 0, or 1); Evidently there are four states 

that share the same energy E2.

If l=0, the recursion relation gives
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Normalization

and we find

If l=1,                                                     the recursion formula terminates the 

series after a single term; 
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(3) The excited states for arbitrary n:

For arbitrary n, the possible values of l are

,1  , ...  ,2  ,1  ,0 −= nl

and for each l there are (2l+1) possible values of m, so the total degeneracy 

of the energy level En is
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The polynomial v(ρ) (defined by the recursion formula Eq.4.76 is a function 

well known to applied mathematicians; apart from normalization, it can be 

written as
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is the associated Laguerre polynomial, and

is the qth Laguerre polynomial.
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Normalization

Generally, we can normalize Rnl as
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Then, finally, the normalized hydrogen wave function are
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Notice that whereas the wave functions depend on all three quantum numbers, 

the energies are determined by n alone. This is a peculiarity of the Coulomb 

potential; generally, the energies depend also on l.

The wave functions are mutually orthogonalThe wave functions are mutually orthogonal

mmllnnmlnnlm ddrdr ′′′′′′ =∫ δδδφθθψψ sin2*

Visualizing the hydrogen wave functions is not easy. See book!



See the figures of solutions of

Hydrogen atom



In practice such perturbations are always present; transitions (or, as they are

sometimes called, “quantum jumps ”) are constantly occurring, and the result

In principle, if you put a hydrogen atom into some stationary stateψnlm, it

should stay there forever. However, if you tickle it slightly (by collision with

another atom, say, or by shining light on it), the electron may undergo a

transition to some other stationary state——either by absorbing energy, and

moving up to a higher-energy state, or by giving off energy (typically in the

form of electromagnetic radiation), and moving down.

4.2.2 The Spectrum of Hydrogen

sometimes called, “quantum jumps ”) are constantly occurring, and the result

is that a container of hydrogen gives off light (photons), whose energy

corresponds to the difference in energy between the initial and final states:
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Now according to the Planck formula, the energy of a photon is proportional 

to its frequency:

Meanwhile, the wavelength is given by                   , so
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is known as the Rydberg constant. Above equation is the Rydberg formula for 

the spectrum of hydrogen; it was discovered empirically in 19th century, and 

the greatest triumph of Bohr’s theory was its ability to account for this result—

—and to calculate R in terms of the fundamental constants of nature.

Transitions to the ground state (nf=1) 

lie in the ultraviolet; they are known 

to spectroscopists as the Lyman series.

Spectrum of Hydrogen:

Transitions to the first excited state 

(nf=2) fall in the visible region; they 

constitute Balmer series.

Transitions to nf=3 (Paschen series) 

are in the infrared region; and so on.
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These spectral lines are produces by These spectral lines are produces by 

"exciting" gas atoms and molecules with 

high voltage (about 5000 volts). This 

energy kicks electrons to higher energy 

levels where they are unstable and drop 

back towards the ground state (lower 

energy levels). As the electrons make this 

downward transition, they release energy 

in the form of visible light. 



The emission and absorption spectrum of hydrogen in the 

visible range is the following 
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