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4.3 Angular Momentum

In the classical theory of central forces, energy and angular momentum are 

the fundamental conserved quantities, and it plays a significant role in the 

quantum theory.  Now we consider the angular momentum in quantum theory.

As we have seen, the stationary states of the hydrogen atom are labeled by 

three quantum numbers: n, l and m. The n is the principle quantum number 

which determines the energy of the state, and, l and m, are related to the 

orbital angular momentum.

Classically, the angular momentum of a particle (with respect to the origin) 

is given by the formula

which is to say, in components, 
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In the following section we’ll obtain the eigenvalues of the angular momentum 

by a purely algebraic technique reminiscent of the one we used in chapter 2 to 

get the allowed energies of the harmonic oscillator; it is all based on the clever 

exploitation of commutation relations. After that we will turn to the more 

difficult problem of determining the eigenfunctions. 

The corresponding quantum operators are obtained by the standard prescription
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difficult problem of determining the eigenfunctions. 

The operators Lx and Ly do not commute; in fact 

4.3.1 Eigenvalues

, ,x y z y x zL L yp zp zp xp   = − −   

[ ] [ ], , , , .z x z z y x y zyp zp yp xp zp zp zp xp   = − − +   

(1) The momentum operators Lx, Ly , Lz and their commutation relations:



[ , ] [ , ] [ , ]x y zx p y p z p i= = = h

Of course, we can calculate [Ly,Lz] or [Lz,Lx] as well, but there is no need to 

From the canonical commutation relations

and the other position and momentum components commute each other. So

,x yL L  =  [ ] [ ], , ( ) .x z y z x y zyp p z xp z p i yp xp i L+ = − =h h

y z z x

calculate these separately——we can get them immediately by cyclic 

permutation of the indices (x→y, y → z, z → x):

These are the fundamental commutation relations for angular momentum; 

every-thing else follows from them.
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Notice that Lx, Ly and Lz are incompatible observables. According to the 

generalized uncertainty principle,
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It would therefore be futile to look for states that are simultaneously 

eigenfunctions of Lx and Ly. So does for other components.
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On the other hand, the square of the total angular momentum, 
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So L2 is compatible with each component of L, and we can hope to find 

simultaneous eigenstates of L2 and (say) Lz:

We will use a “Ladder operator” technique, very similar to the one we applied 

to the harmonic oscillator back in Section 2.3.1. Let
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And, of course,

If f  is an eigenfunction of L2 and Lz , so

so L f is an eigenfunction of L2, with the same eigenvalueλ, and
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Therefore, as

( ) ( )( ) ,zL L f L fµ+ += + h ( ) ( )( )zL L f L fµ− −= − h

we call L+ the “raising” operator, because it increases the eigenvalue of Lz by ћ, 

and L- the “lowering” operator, because it lowers the eigenvalue by ћ.

For a given value of λ, then, we obtain a “ladder” of states, with each “rung” 

separated from its neighbors by one unit of ћ in the eigenvalue of Lz(see Figure). 

To ascend the ladder we apply the raising operator, and to descend, the lowering 

operator. But this process cannot go on forever: Eventually we’re going to reach 

a state for which the z-component exceeds the total, and that cannot be. a state for which the z-component exceeds the total, and that cannot be. 
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Now we calculate the following operators as
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Evidently the eigenvalues of Lz are µ=mћ, where m goes 

from –l to +l in N integer steps. In particular, it follows 

that l=-l+N, and hence l=N/2, so l must be an integer or 

a half-integer.

The eigenfunctions are characterized by the number l and m:
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of m.

Some people like to illustrate this result 

with the diagram in Figure (l=2). The 
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4.3.2 Eigenfunctions

First of all we need to rewrite Lx, Ly and

Lz in spherical coordinates. Now, as
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and the gradient ▽▽▽▽, in spherical coordinates, is:
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But as
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We can also determine the raising and lowering operators:
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But this is precisely the “angular equation”. And it’s also an eigenfunction of Lz, 

with the eigenvalue of mћ :
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but this is equivalent to the azimuthal equation (Eq.4.21). 
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We have already solved this system of equations: The result is the spherical 

harmonic,             . 

Conclusion: Spherical harmonics are eigenfunctions of L2 and Lz.

Recalling what we have done in Section 4.1 that we solved the Schrodinger 

equation by separation of variables, we have inadvertently constructed 

simultaneous eigenfunctions of the three commuting operators H, L2 and Lz:
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We can rewrite the Schrodinger equation more compactly:
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Question:

There is only one inconsistency between the functions 

By algebraic method the angular momentum permits l to take on 

half-integer values, whereas separation of variables yielded 

eigenfunctions only for integer values. What is?

The l can be half-integer that is turned out to be important in the following 

sections. Spin!
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In classical mechanics, a rigid object admits two kinds of angular momentum:

4.4 Spin
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orbital angular momentum

associated with the motion of the 

center of mass,  and spin

o
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IS = center of mass

where I is the  moment of inertia, associated with the motion about the center 

of mass.

But, in quantum mechanics, an analogous thing happens, and there is a 

absolutely fundamental distinction. In addition to orbital angular momentum, 

associated ( in the case of hydrogen) with motion of the electron around the 

nucleus (and described by the spherical harmonics), the electron also carries 

another form of angular momentum, which is nothing to do with motion in 

space (and which is not, therefore, described by any function of the position 

variables r, θ, Φ) but which is somewhat analogous to classical spin. 

,ωIS = center of mass



However, the electron (as far as we know) is a structureless point particle, and its 

spin angular momentum cannot be decomposed into orbital angular momenta of 

constituent parts. Suffice it to say that elementary particles carry intrinsic angular 

momentum (S) in addition to their “extrinsic” angular momentum (L).

The algebraic theory of spin is a carbon copy of the theory of orbital angular 

momentum, beginning with the fundamental commutation relations:
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It follows (as before) that the eigenvectors of S2 and Sz satisfy
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But this time the eigenvectors are not spherical harmonics ( they are not 

functions of r, θ, Φ at all), and there is no a priori reason to exclude the half-

integer values of s and m:

1. It so happens, that every elementary particle has a specific and immutable 
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Notes:

1. It so happens, that every elementary particle has a specific and immutable 

value of s, which we call the spin of that particular species: pi mesons have spin 

0; electrons have spin 1/2; photons have spin 1; deltas have spin 3/2; gravitons 

have spin 2; and so on. 

2. By contrast, the orbital angular momentum quantum number l can take on 

any integer value you please, and will change from one to another when the 

system is perturbed. But s is fixed, for any given particle, and this makes the 

theory of spin comparatively simple.



By far the most important case is s=1/2, for this is the spin of the particles 

that make up ordinary matter (protons, neutrons, and electrons), as well as 

all quarks and all leptons. Moreover, once you understand spin 1/2, it is a 

simpler matter to work out the formalism for any higher spin. These are just 

two eigenstates:
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Using above two states as a basis vectors, the general state of a spin-1/2 particle 

can be expressed as a two-element column matrix (or spinor):
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with representing spin up, and                           for spin down.               
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Meanwhile, the spin operators become 2×2 matrices, which we can work 

out by noting their effect on χ+ and χ-. 
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If we write S2 as a matrix with undetermined elements,
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Then the first equation says
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Finally, we have
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Similarly, we write Sz as a matrix with undetermined elements, ,
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Mean well for “ladder operators” 
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These are the famous Pauli spin matrices. Notice that Sx, Sy Sz, and S2 are all 
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Since Sx, Sy and Sz all carry a factor of ћ/2, it is tidier to define
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These are the famous Pauli spin matrices. Notice that Sx, Sy Sz, and S2 are all 

hermitian (as they should be, since they represent observables). On the other 

hand, S+ and S- are not hermitian—evidently they are not observable.

The eigenspinors of Sz are (of course)
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Since these are the only possibilities, that is (i.e. the spinor must be normalized)
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But what if, instead, you chose to measure Sx? What are the possible results, 

and what are their respective probabilities? According to the generalized 

statistical interpretation, we need to know the eigenvalues and eigenspinors 

of Sx. The characteristic equation of Sx is
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Evidently the normalized eigenspinors of Sx are

Not surprisingly, the possible value for Sx are the same as those for Sz . The 

eigenspinors are obtained in the usual way:
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As the eigenvectors of a hermitian matrix, they span the space; the generic 

spinor can be expressed as a linear combination of them:
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Now, if you measure Sx, the probability of getting ћ/2 is 1/2|a+b|2, and the -ћ/2

probability of getting  is 1/2|a-b|2. 



Discussion: See book on page 176.
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z-component Sz ?

x-component Sx ?



A spinning charged particle constitutes a magnetic dipole. 

Its magnetic dipole moment, µ, is proportional to its spin 

angular momentum, S:

4.4.2 Electron in Magnetic Field

;Sγ µ
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B
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µ
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The proportional constant, γ, is called the gyromagnetic ratio and 

m

e
γ ⋅−= 2

so the Hamiltonian of a spinning charged particle, at rest in a magnetic field B, 

is 

BµH
rr

⋅−=

When a magnetic dipole is placed in a magnetic field B,   it experiences a 

torque               ,  which is to line it up parallel to the field (just like a compass 

needle). The energy associated with this torque is

B
rr

×µ

BSγH
rr
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m



Imagine a particle of spin 1/2 at rest in a uniform magnetic field, which 

points in the z-direction:

1. Larmor precession: 
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The Hamiltonian, in matrix form, is

The eigenstates of H are the same as those of Sz

102  −

with the energy ,+χ

,−χ with the energy 

,
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E +=−

Evidently the energy is lowest when the dipole moment is parallel to the 

field——just as it would be classically.
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Since the Hamiltonian is time-dependent, the general solution to the time-

dependent Schrodinger equation,

−+ += χχχ ba)0(

can be expressed in terms of the stationary states:

General initial state t=0:

2/  tBiγ

Clearly, the constant a and b are determined by the initial conditions:
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αwhere       is a fixed angle whose physical significance will appear in a moment.
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To get a feel for what is happening here, let’s calculate the expectation value 

of S, as a function of time:

=== + )()()()( tSttStS xxx χχχχ











− 2/

2/

0

0

)2/sin(

)2/cos(
tBi

tBi

e

e
γ

γ

α

α









01

10

2

h

))2/sin(   )2/(cos(
2/2/ 00 tBitBi

ee
γγ αα +−

).cos(sin
2

0tBγα
h

=



Similarly,
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Finally, we have
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Evidently <S> is tilted at a constant angle      to the z-axis, and precesses 

about the field at the Larmor frequency

α

just as it would classically.

,0γB=ω

2. The Stern-Gerlach experiment: 

Stern-Gerlach



Stern
Gerlach



Experimental conditions:

(1) A heavy neutral atomic beam — Ag atom, for example.

How to determine the atomic spin: all the inner electrons of the atom are 

paired, in such a way that their spin and orbital momenta cancel and the net 

spin is simply that of the outermost—unpaired—electron. if we use silver 

Using neutral atom is to avoid the large-scale deflection that would otherwise 

result form the Lorentz force, and heavy so we can construct localized wave 

packets and treat the motion in terms of classical particle trajectories.

(2) Inhomogeneous magnetic field

spin is simply that of the outermost—unpaired—electron. if we use silver 

atoms, for example, there is only one outmost unpaired electron there, so in 

this case s=1/2, and hence the beam splits in two (2s+1=2).

In a inhomogeneous magnetic field, there is not only a 

torque which reduces the precession of the spin, but 

also a net force which can reduce the separation of the 

atoms, operating on a magnetic dipole.



In a inhomogeneous magnetic field, there is not only a torque, but also a force, 

on a magnetic dipole:

).()( BSγBµHF
rrrr

⋅∇=⋅∇=−∇=

This force can be used to separate out particles with a particular spin orientation, 

as follows. 

Imagine a beam of relatively heavy neutral atoms, traveling in the y direction, 

1). Classical picture theory:

Imagine a beam of relatively heavy neutral atoms, traveling in the y direction, 

which passes through a region of inhomogeneous magnetic field—say,

,)( 0 kαzBiαxB
rrr

++−=

where B0 is a strong uniform field and the 

constant α describes a small deviation from 

homogeneity. Only the z-component of B is 

important, while x-component of B here is 

for
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But because of the Larmor precession about B0, Sx oscillates rapidly, and 

averages to zero; the net force is in the z direction:

[4.170],zz γαSF =

Then the force on these atoms is 

and the beam is deflected up and down, 

in proportion to the z component of the 

spin angular momentum. Classically, 

we’d expect a smear, but in fact the 

beam splits  into 2s+1 separate streams, 

beautifully demonstrating the 

quantization of angular momentum.
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Suppose the atom has spin 1/2, and starts out in the state 

We examine the process from the perspective of a reference frame that moves 

along with the beam. In this frame the Hamiltonian starts out zero, turns on for 

a time T, and then turns off again:

2). Quantum picture theory:

Suppose the atom has spin 1/2, and starts out in the state 

,)( −+ += χχχ bat for .0≤t

While the Hamiltonian acts,         evolves in the usual way: )(tχ
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and hence it emerges in the sense
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corresponds to a momentum in z-direction of p, the two terms above carry 

momentum in the z direction; the spin up component has momentum

As the eigenfunction of momentum
( )zpi

p ezf
h

h
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π
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momentum in the z direction; the spin up component has momentum

and it moves in the plus-z direction; the spin-down component has the opposite 

momentum, and it moves in the minus-z direction. Thus the beam splits in two.
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Comparison: in classical point of view,
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The significance of Stern-Gerlach experiment:

(1) The experiment demonstrated the spatial quantization of the quantum 

theory. However, this experiment was performed before the notion of spin

was proposed; and later it turned out that the two split lines are due to the 

spin of the outermost electron of silver.

(2) Measurement of the state——spin-up state or spin-down state.

(3) Preparation of state——spin-up state or spin-down state.



Suppose now that we have two spin-1/2 particle, the electron and the proton 

in the ground state of hydrogen. Each can have spin up or spin down, so 

there are four possibilities in all:

.   ,   ,   , ↓↓↓↑↑↓↑↑

The first arrow refers to the electron and 

4.4.3 Addition of Angular Momenta

o

r
r

)1(
S

)2(
S

proton

1. Simplest example:

Question: What is the total angular momentum of the atom?

The first arrow refers to the electron and 

the second to the proton.
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Let total angular momenta of the system is

r

Above composite states of  the system can be represented by .21 χχ
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Note that S(1) acts only on χ1, and S(2) acts only on χ2. That is
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So m (the quantum number for the composite system) is just m1+m2:
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Note that above four states are orthogonal each other (independent states).



But we get two states with m=0 ? According to general theory of angular 

momentum, the state can be generated by

So if we apply the lowering operator, 
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if we apply the lowering operator, )2()1(
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Evidently the three states are in the same set with s=1, which are:
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The total s=1 and m=-1,0,1 and there have three states as

,11,  ,1,0  ,1,1 −⇒ms,

This is called the triplet combination.

Meanwhile, the other orthogonal state with m=0 carries s=0:
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This is called the singlet combination.
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Conclusion: the combination of two spin-1/2 particles can carry a total spin 

of 1 or 0, depending on whether they occupy the triplet or the singlet 

configuration. Now we prove it by getting the eigenvalue of S2.
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Applying it on the triplet, we have
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Applying it on the triplet, we have
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Similarly,
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The eigenvalue of S2 on triplet is .1)11(12 22 =⇒+= shh
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Some examples: book

2. General theory of addition of angular momenta:

If you combine spin s1 with spin s2, what total spins s can you get ? The 

answer is that you get every spin from (s1+ s2) down to (s1- s2)——or 

(s2- s1), if s2> s1——in integer steps:

.||,),2(),1(),( 21212121 sssssssss −−+−++= L

The spin states for s is: |s m >; The spin states for s is: |s m >.The spin states for s1 is: |s1 m1>;

The combined state for the total spin s of the system is |s m>. 

The spin states for s2 is: |s2 m2>.

The direct product states for composite state is: |s1 m1> |s2 m2>.

Then the combined state |s m> with total spin s and z-component m will be 

some linear combination of composite states |s1 m1> |s2 m2> :
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The constants                  are called Clebsch-Gordan coefficients. 
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Or reversely

See the table:
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Group theory

The composition of the direct product of two irreducible representations 

of the rotation group into a direct sum of irreducible representation.


