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5.1  Two-Particle System

For a single particle,                is a function of the spatial coordinates r and the 

time t (here now we ignore the spin). The wave function for a two-particle 

system is a function of the coordinates of particle one (r1), the coordinates of 

particle two (r2), and the time: 
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Its time evolution is determined by the Schrodinger equation:
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where H is the Hamiltonian for the whole system:
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the subscript on ▽ indicates differentiation with respect to the coordinates 

of particle 1 or particle 2).



is the probability of finding particle 1 in the volume d3r2 and particle 2 in the 

volume d3r1; evidently                      must be normalized in such a way that

For time-independent potentials, we obtain a complete set of solutions by 

The statistical interpretation carries over in the obvious way:
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For time-independent potentials, we obtain a complete set of solutions by 

separation of variables:
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where the spatial wave function satisfies the time-independent Schrodinger 

equation, with E the total energy of the system,

.),(
22

21

2

2

2

2
2

1

1

2

ψψψψ EV
mm

=+∇−∇− rr
hh



5.1.1 Bosons and Fermions

Suppose particle 1 is in the (single-particle) state          , and particle 2 is in the 

state            . In that case                  is a simple conduct
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)(rbψ ),( 21 rrψ

).()(),( 2121 rrrr ba ψψψ =

Of course, this assumes that we can tell the particles apart. In quantum 

mechanics, all we could say is that one of the particle is in the state            and 

the other is in the state of            . In classical mechanics, we can always 

discriminate them from each other. In microscopic world, the fact is , all the 
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Quantum mechanics neatly accommodates the existence of particles that are 

indistinguishable in principle: We simply construct a wave function that is 

noncommittal as to which particle is in which state. There are actually two ways 

to do it:

discriminate them from each other. In microscopic world, the fact is , all the 

electrons are utterly identical, in a way that no two classical objects can ever be. 
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Thus the theory admits two kinds of identical particles: bosons,  for which we 

use the plus sign, and fermions, for which we use the minus sign. Photons and 

mesons are bosons; protons and electrons are fermions. It so happens that

all particles with integer spins are bosons, and  

all particles with half-integer spins are fermions.  

Further, bosons and fermions have quite different statistical properties. The 

connection between spin and “statistics” can be proved in relativistic quantum connection between spin and “statistics” can be proved in relativistic quantum 

mechanics; in non-relativistic theory it must be taken as an axiom. 

It follows, in particular, that two identical fermions (for example, two electrons) 

cannot occupy the same state. For if                          , then)()( rr ba ψψ =
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and we have left with no wave function at all. This is the famous Pauli 

exclusion principle.



Another general way to formulate this problem: bosons and fermions
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Let us define the exchange operator, P, which interchanges the two particles:

Clearly, P2=1 , and it follows that the eigenvalues of  P are ±1.

Now, if the two particles are identical, the Hamiltonian must treat tem the same:
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It follows that P and H are compatible observables,
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Then we have, for any state
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and hence we can find a complete set of functions that are simultaneous 

eigenstates of both. That is to say, we can find solutions to the Schrodinger 

equation that are either symmetric or antisymmetric under exchange:
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Moreover, if the system starts out in such a state, it will remain in such a state.
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If 

If 

for bosons 

for fermions

This is the symmetrization requirement of identical particles, and this is a 

general statement of  bosons and fermions.

Example 5.1. On the book!



5.1.2 Exchange Forces
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To give you some sense of what the symmetrization requirement actually does. 

Here we work out the simple one-dimensional example below. Suppose particle 

is in the (single-particle) state          , and the other particle is in the state            , 

and these two states are orthogonal and normalized. If the two particles are 

distinguishable, and number 1 is the one in state          , then the combined wave 

function is
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If they are identical bosons, the composite wave function is

and if they are identical fermions, it is

[ ];)()()()(
2

1
),( 212121 xxxxxx abba ψψψψψ +=+

[ ];)()()()(
2

1
),( 212121 xxxxxx abba ψψψψψ −=−



Let calculate the expectation value of the square of the separation distance 

between the two particles,
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(1) Distinguishable particles.
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In this case, then
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If the states of two particles exchange, the answer will be the same.

(2) Identical particles (bosons and fermions).

For the wave function
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Evidently

Comparing the two cases, we see that the difference resides in the final term:
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Discussion:

(1) Identical bosons tend to be somewhat closer together, and identical 

fermions somewhat father apart, than distinguishable particles in the 

same two states.

(2)  Exchange force.(2)  Exchange force.

The system behaves as though there were a “force of attraction” between 

identical bosons, pulling them closer together, and a  “force of repulsion” 

between identical fermions, pushing them apart ( remember that we are 

for the moment ignoring spin). We call it an exchange force, although it’s 

not really a force at all-----no physical agency is pushing on the particles; 

rather, it is a purely geometrical consequence of the symmetrization 

requirement. It is also a strictly quantum mechanical phenomenon, with 

no classical counterpart.



(3)  Notice that <x>ab vanishes unless the two wave functions overlap. 
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That is natural that, when two particles are very far away,  the two particles 

become classical particles that can be distinguished.



(4)  Effect: The symmetrization requirement on Hydrogen molecule (H2)

e-

e-
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bosons fermions

We have been ignoring spin. The complete state of the electron includes 

not only its position wave function, but also a spinor, describing the 

?
Covalent bond 共价键
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not only its position wave function, but also a spinor, describing the 

orientation of its spin:
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)(sχ Singlet state: antisymmetric spin state

Triplet states: symmetric spin state
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antisymmetric
Antisymmetric spatial state

Symmetric spatial state
bonding

antibonding



5.2  Atoms

The term in curly brackets represents the kinetic plus potential energy of the 

A neutral atom, of atomic number Z, consists of a heavy nucleus, with 

electric charge Ze, surrounded by Z electrons (mass m and charge –e). The 

Hamiltonian for this system is
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The term in curly brackets represents the kinetic plus potential energy of the 

jth electron, in the electric field of the nucleus; the second sum (which runs 

over all values of  j and k except j=k) is the potential energy associated with 

the mutual repulsion of the electrons (the factor of 1/2 in front corrects for 

the fact that summation counts each pair twice). 

The problem is to solve Schrödinger’s equation,
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for the wave function                                     .
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Because the electrons are identical fermions, however, not all solutions are 

acceptable: only those for which the complete state (position and spin),

is antisymmetric with respect to interchange of any two electrons. In particular, 

no two electrons can occupy the same state.

Unfortunately, the Schrodinger equation with Hamiltonian in Equation 5.24 

cannot  be solved exactly (at any rate, it hasn’t been), except for the very 

1 2 3 1 2 3( , , , , ) ( , , , , ),Z Zψ χr r r r s s s sL L

cannot  be solved exactly (at any rate, it hasn’t been), except for the very 

simplest case, Z=1 (hydrogen). In practice, one must resort to elaborate 

approximation methods. Some of these we shall explore in Part II. Now we 

plan only to sketch some qualitative features of the solutions, obtained by 

neglecting the electron repulsion term altogether.

In section 5.2.1 we study the ground state and excited states of helium.

In section 5.2.2 we will examine the ground states of higher atoms.



After hydrogen, the simplest atom is helium (Z=1). The Hamiltonian,

consists of two hydrogenic Hamiltonians (with nuclear charge 2e), one for 

electron 1 and one for electron 2, together with a final term describing the 

repulsion of the two electrons. It is the last term that causes the trouble. If we 

5.2.1  Helium
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with half the Bohr radius,

repulsion of the two electrons. It is the last term that causes the trouble. If we 

simply ignore it, the Schrodinger equation separates, and the solutions can be 

written as products of hydrogen wave functions:
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The total energy would be

and four times the Bohr energies

  ,
11

42
122

2

0

2

2
E

nn

em
En =























−=

πεh

.4
1

4

2

2 2

2

0

2

2 nE
n

em
E =























−=

πεh

 eV.-E 6131 =

The total energy would be

).(4 nn EEE ′+=

(1) In particular, the ground state would be

( ) ( ) ( ) ,
8

 ,
/)(2

321001100210
21 arr

e
a

+−==
π

ψψψ rrrr

and its energy would be . -109)6.136.13(4 eVE =−−=



Because the ground state                       is a symmetric function, the spin state

has to be antisymmetric, so the ground state of helium should be a singlet

configuration, which the spins “oppositely aligned”. The actual ground state of 

helium is indeed a singlet, but the experimentally determined energy is –78.975

eV, so the agreement is not very good. 

ψψ

( )210 , rrψ

The excited states of helium consist of one electron in the hydrogenic ground 

state, and the other in an excited state:

(2) The excited state

In this case, we can construct both symmetric and antisymmetric combinations, 

in the usual way; 
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The former go with the antisymmetric spin configuration (the singlet), and 

they are called parahelium, while the latter require a symmetric spin 

configuration (the triplet), and they are known as orthohelium. 



The ground state is

necessarily parahelium;

the excited states come

in both forms. Because

the symmetric spatial

state brings the

electrons closer together,

we expect a higher

interaction energy in

parahelium, and indeed,parahelium, and indeed,

it is experimentally

confirmed that the

parahelium states have

somewhat higher

energy than their

orthohelium

counterparts.

-



Ignoring the mutual 

repulsion between electrons.

The individual electrons 

occupy one-particle 

hydrogenic state—orbitals

The heavier atom:  Z > 2

5.2.2  The Periodic Table
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three electrons       The n=1 shell is filled with two, 

the other electron must be put into the n=2 shell.

(1) Helium, Z=2: two electrons       the n=1 shell is filled.

electron repulsion

Within a given shell, the state with lowest energy is l=0, 

Occupation-filling rules:

(2) Lithium, Z=3:

n=2 l=1, or  l=0. l=0?

),,( mln

n=2

l=1

Within a given shell, the state with lowest energy is l=0, 

and the energy increases with increasing l.

The third electron )0,0,2(

(3) Beryllium, Z=4:

The fourth electron )0,0,2(

The third electron Spin up

Spin down

(4) Boron, Z=5: l=1The fifth electron ),1,2( m

n=1

n=2

l=0

)0,0,2(



Aluminum Z=13— Argon Z=18

(5) Neon, Z=10: n=1and n=2 shells are 

all filled.

(6) Sodium and magnesium: Z=11,12

)0,0,3(Sodium

magnesium )0,0,3(

),2,3( m

n=4

l=2

)0,0,4(

),1,3( m

l=1 ),1,4( m

n=5
l=2 ),2,4( m

)0,0,5(l=0

l=3 ),3,4( ml=1

Potassium Z=19

)0,0,3(

n=3

l=0

l=1 ),1,3( m

10

11  12

Calcium    Z=20

l=2

l=0 )0,0,4(

)0,0,4(

)0,0,4(

Scandium  Z=21— Zinc Z=30 ),2,3( m

n=1,2

Gallium Z=31— Krypton Z=36 ),1,4( m

18CaK

Rubidium Z=37

Strontium Z=38

)0,0,5(

)0,0,5(



Nomenclature for atomic states:

l=0 is called s (for “sharp”)

l=1 is called p (for “principle”)

l=2 is called d (for “diffuse”)

l=4 is called g (out of imagination)

l=5 is called h

n=1 shell is called K

n=2 shell is called L

n=3 shell is called M

shell angular

l=3 is called f (for “fundamental”)n=4 shell is called N

magnetic 

not listed

l=5 is called h

l=6 is called i

l=7 is called k

The state of a particular electron is represented by the pair n,l, with n (the 

number) giving the shell and l (the letter) specifying the orbital angular 

momentum; the magnetic quantum number m is not listed, but an exponent is 

used to indicate the number of electrons that occupy the state in question.

(3d)2for example



The configuration, for example, for the ground state of carbon, 

222 )2()2()1( pss

Tells us that there are two electrons in the orbital (1,0,0), two in the orbital 

(2,0,0), and two in some combination of the orbitals (2,1,1), (2,1,0) and 

(2,1,-1).

For total atom:

The total atom state can be presented by a the following label

S, P, D, F,

2S+1LJ

The total orbital angular momentum number

Grand total angular momentum number

J=S+LTotal spin momentum number
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For the ground state of carbon

0,1,2=L

0,1=S
0,1,2,3=J ?

How to determine these 

total quantum number 

L,S,J ? 

Hund’s Rules: See book problem 5.13. homework

Ground state of carbon

2=L

1=S

0=J
0

3
P

See book, the Table 5.1



5.3  Solids

In the solid state, outermost valence electron become detached, and roam 

throughout the material. Two primitive models:

(1) The electron gas theory: 松模费德(Sommerfeld) 

Which ignores all forces Free particles in a box.

(2) Bloch’s theory: Periodic potential

Which introduces a regularly spaced periodic potential.

Band 





5.3.1  The Free Electron Gas Theory

Suppose the object in question is a rectangular solid, with dimensions lx, ly, lz, 

and imagine that an electron inside experiences no forces at all, except at the 

impenetrable walls:
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we obtain the general solutions
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The boundary conditions require that X(0)=Y(0)=Z(0)=0, so Bx=By=Bz=0, and 

X(lx)=Y(ly)=Z(lz)=0, so that
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where k is the magnitude of the wave vector, k=(kx,ky,kz).



If you imagine a three-dimensional space, with axes kx,ky,kz, and planes 

drawn in at 
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(kx,ky,kz) One stationary state

Each block in this grid, and hence each 

state, occupies a volume in k-space:
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Suppose our sample contains N atoms, and each atom contributes q free electrons.

q is small number: 1 or 2

Avogadro's Constant = 6.0221415 × 1023 mol-1

If electrons were bosons ( or distinguishable particles), they would all settle down 

to the ground state,          . But electrons are in fact identical fermions, subject to 

the Pauli exclusion principle, so only two of them can occupy any given state. 

They will fill up one octant of a sphere in k-space, whose radius, kF, is determined 

111ψ

They will fill up one octant of a sphere in k-space, whose radius, kF, is determined 

by the fact that each pair of electrons requires a volume           :V/3π

, 
3

4

8

1 3








FkπVolume

,
2

1 3










V
Nq

π

.
2

 
3

4

8

1 3
3









=









V

Nq
kF

π
π

Fk

Fk

Fk



Thus

where

is the free electron density (the number of free electrons per unit volume).
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is the free electron density (the number of free electrons per unit volume).

The boundary separating occupied and unoccupied states, in k-space, is 

called the Fermi surface (hence the subscript F). The corresponding energy 

is called the Fermi energy, EF; for a free electron gas,
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The total energy of the electron gas can be calculated as follows: A shell of 

thickness dk contains a volume
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and hence the total energy is
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This quantum mechanical energy plays a role rather analogous to the internal This quantum mechanical energy plays a role rather analogous to the internal 

thermal energy (U ) of an ordinary gas. In particular, it exerts a pressure on the 

walls, for if the box expands by an amount dV, the total energy decreases:
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and this shows up as work done on the outside (dW=PdV) by the quantum 

pressure P. Evidently



Quantum pressure P:
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Quantum reason: internal quantum pressure

Quantum essential reason: antisymmetrization requirement of 

the wave function of identical fermions.

Degeneracy pressure Exclusion pressure



We are now going to improve on the free electron model by including the 

forces exerted on the electrons by the regularly spaced, positively charged, 

essentially stationary nuclei. The periodic potential here determines the 

qualitative behavior of solids. Now we develop the simplest possible model: 

a one-dimensional Dirac comb, consisting of evenly spaced delta function 

spikes.

5.3.2  The Bloch’s theory: Band Structure

1. Theorem of periodic potential: Bloch theorem

A periodic potential is one that repeats itself after some fixed distance a: 
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Bloch theorem tells us that for such a potential the solutions to the Schrodinger 

equation,
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for some constant K, which is independent on x.

Proof:  Let D be the “displacement” operator:
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Then, for a periodic potential, we have
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Therefore D commutes with the Hamiltonian H :

[ ] 0, =HD

and hence we are free to choose eigenfunctions of H that are simultaneously 

eigenfunctions of D:
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Now, λ is a nonzero constant complex number, and can be expressed as an 

exponential:
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2. Energy analysis: Band structure

Of course, no real solid satisfies the 

condition of periodic potential. 
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However, for large number of atoms containing in the solid, we can wrap the 

x-axis around a circle to meet the periodic condition and, finally, we impose 

the following boundary condition
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It follows that
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Now, suppose the potential consists of a long string of delta-function spikes:
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According to Bloch’s theorem, the wave function in the cell immediately to the 

The general solution is  

In region 0<x<a the potential is zero, so
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According to Bloch’s theorem, the wave function in the cell immediately to the 

left of the origin                       is)0a( <′<− x
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At x=0, ψ must be continuous, so
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At x=0, ψ’ (its derivative) is not continuous, satisfying [2.125]
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Solving Equation 5.61 for Asin(ka) yields

(Equation 5.62)



Substituting this into Equation 5.62, and cancelling kB, we find 

which simplifies to
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This is the fundamental result, from which 

all else follows. For any other potential, 

Kronig-Penney for example, the above 

formula is more complicated, but is shares 

the qualitative features we are about to 

explore.



(1) Above equation determines the possible values of k, and hence the allowed 

energies.

Discussion:

(2) The allowed energy and energy band.

To simplify the notation, let
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so the right set of equation 5.64 can be written as
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The constant β is a dimensionless measure of the “strength” of the delta 

function.
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In practice there will be Nq of them, where q is again the number of “free” 

electrons per atom. Because of Pauli exclusion principle, only two electrons 

can occupy a given spatial state, so if q=1, they will half fill the first band, if 

q=2 they will completely fill the first band, if q=3 they half fill the second 

band, and so on——in the ground state.

(1) Electrons occupation of the band:

(2) Conductors, insulators and semiconductors

Band structure is the signature of periodic potential.Band structure is the signature of periodic potential.

If a band is entirely filled, it takes a relatively large energy to excite an 

electron, since it has to jump across the forbidden zone. Such materials will be 

electrical insulators. On the other hand, if a band is only partly filled, it takes 

very little energy to excite an electron, and such materials are typically 

conductors. If you dope an insulator with a few atoms of larger or smaller q, 

this puts some “extra” electrons into the next higher band, or creates some 

holes in the previously filled one, allowing in either case for weak electric 

currents to flow; such materials are called semiconductors.



5.4  Quantum Statistical Mechanics

If we have a large number of N particles, in thermal equilibrium at 

temperature T, what is the probability that a particle would be found to 

have the specific energy, Ej?

The fundamental assumption of statistical mechanics is that in thermal 

equilibrium every distinct state with the same total energy, E, is equally 

probable. 

The temperature, T, is a measure of the total energy of a system in thermal 

equilibrium in classical mechanics. What is the new in quantum mechanics?

How to count the distinct states!

Why? Give a example to demonstrate!


