量子力学

Quantum mechanics

School of Physics and Information Technology Shaanxi Normal University

Chapter 5

IDENTICAL PARTICLES

5.1 Two-Particle Systems 201
5.2 Atoms 210
5.3 Solids 218
5.4 Quantum Statistical Mechanics 230

5.4 Quantum Statistical Mechanics

If we have a large number of N particles, in thermal equilibrium at temperature T, what is the probability that a particle would be found to have the specific energy, E_{j} ?

The fundamental assumption of statistical mechanics is that in thermal equilibrium every distinct state with the same total energy, E, is equally probable.

The temperature, T, is a measure of the total energy of a system in thermal equilibrium in classical mechanics. What is the new in quantum mechanics? How to count the distinct states!

Why? Give a example to demonstrate!

5.4.1 An Example

Suppose we have just have three noninteracting particles, A, B, and C, (all of mass m) in the one-dimensional infinite square well. The total energy is
where n_{A}, n_{B}, and n_{C} are positive integers. Now suppose, for the sake of argument, that total energy
which is to say,

Thus $\left(n_{A}, n_{B}, n_{C}\right)$ can be one of the following:

total
For example, $\left(n_{A}, n_{B}, n_{C}\right)=(11,11,11)$ means $n_{A}=11, n_{B}=11, n_{C}=11$, and A, B, C in the single states

If the particles are distinguishable, the three-particle state is

The total number of probable $\left(n_{A}, n_{B}, n_{C}\right)$ is 13 .

The most important quantity is the number of particles in each state, that is, the occupation number, N_{n}, for the single state
Configuration (排布) : The collection of all occupation numbers for a given (3-particle) state we will call the configuration.

1. Distinguishable condition:

If the particles are distinguishable, each of these $\left(n_{A}, n_{B}, n_{C}\right)$ represents a distinct quantum state, and the fundamental assumption of statistical mechanics says that in thermal equilibrium they are all equally likely.

If all the three particles are in

one state

If two are in and one is in , the configuration is

If two are in and one is in , the configuration is

three different states

If one is in , one in , and one is in , the configuration is
six different states

Of course, the last is the most probable configuration, because it can be achieved in six different ways, whereas the middle two occur three ways, and the first only one.

Under the above condition, if we select one of these three particles at random, what is the probability $\left(P_{n}\right)$ of getting a specific (allowed) energy E_{n} ?
E_{1} : Only the third configuration \Rightarrow Probability $3 / 13$ In the third configuration, \Rightarrow Probability $2 / 3$ \} two particles are in E_{1}
$E_{2}: \longrightarrow$
E_{3} :
$E_{4}: \longrightarrow$
E_{5} : the second configuration \Rightarrow Probability $3 / 13$ In the second configuration, one particle is in E_{5} \Rightarrow Probability $1 / 3$ the fourth configuration \Rightarrow Probability 6/13 In the fourth configuration, one particle is in E_{5}
\Rightarrow Probability $1 / 3$
E_{7} : Only the fourth configuration \Rightarrow Probability 6/13
In the fourth configuration, \Rightarrow Probability $1 / 3$
one particle is in E_{7}
E_{11} : Only the first configuration $\quad \Rightarrow$ Probability $1 / 13$
In the first configuration, \Rightarrow Probability $3 / 3\}$
three particles are in E_{11}

Similarly

We can check this by total probability

Above analysis is based on the assumption that the three particles are distinguishable!

2. Identical fermions:

For fermions, no two particles are in the same state. This antisymmetrization requirement exclude the configurations where two particles are in the same state. Only the fourth configuration is available now!
$E_{1}: \longrightarrow$
E_{5} : Only one configuration \Rightarrow Probability 1 In the fourth configuration, one particle is in E_{5} \Rightarrow Probability $1 / 3$
E_{7} : In this configuration, one particle is in $E_{7} \Rightarrow$ Probability $1 / 3$
E_{17} : In this configuration, one particle is in $E_{17} \Rightarrow$ Probability $1 / 3$

3. Identical bosons:

For bosons, each configuration enables one state, so
E_{1} : The third configurations \Rightarrow Probability $1 / 4$ In this configuration, two particles are in E_{1}
\Rightarrow Probability $2 / 3$
E_{5} : the second configuration \Rightarrow Probability $1 / 4$ In the second configuration, one particle is in $E_{5} \quad \Rightarrow$ Probability 1/3 the fourth configuration \Rightarrow Probability 1/4 In the fourth configuration, one particle is in E_{5}
\Rightarrow Probability $1 / 3$
Similarly

Conclusion:

(1) This example shows that the nature of the particles determines the counting properties, or the statistical properties! The number of internal distinct states is different and the probability of getting specific energy is different too.
(2) This example gives a system of three particles. If the number of particles in huge, we can conclude: The distribution of individual particle energies, at equilibrium, is simply their distribution in the most probable configuration.

5.4.2 The General Case

Now consider an arbitrary potential, for which one particle energies are
with degeneracies

Suppose we put N particles (all with the same mass) into this potential; we are interested in the configuration
for which there are N_{1} particles with energy E_{1}, N_{2} particles with energy E_{2}, and so on.

Now we consider general question: how many distinct states correspond to this particular configuration?

The answer: The number of the distinct states $Q\left(N_{1}, N_{2}, N_{3}, \ldots \ldots\right)$ depends on whether the particles are distinguishable, identical fermions, or identical bosons.

1. Distinguishable particles:

(1) Choose N_{1} from N for energy bin: the binomial coefficient

(2) Arrangement of the N_{1} particles within the bin on the degenerate d_{1} states:
(3) Thus the number of ways to put N_{1} particles, selected from a total population of N, into a bin containing d_{1} distinct option, is
(4) The same goes for energy bin E_{2}, of course, except that there are now only $N-N_{1}$ particles left to work with:
(5) Finally, it follows that

2. Identical fermions:

(1) The particles are identical.
(2) The antisymmetrization requires that only one particle can occupy any given state.

Here we pick N_{1} draws from d_{1} draws to locate particles.

3. Identical bosons:

(1) The particles are identical.
(2) Although the wave function of the N-particle state is symmetry, more than one particles can occupy the draws in certain bin.

5.4.3 The Most Probable Configuration

In thermal equilibrium, every state with a given total energy E and a given particle number N is equally likely. So the most probable configuration (N_{1}, $N_{2}, N_{3}, \ldots \ldots$) is the one that can be achieved in the largest number of different ways- it is that particular configuration for which $Q\left(N_{1}, N_{2}, N_{3}, \ldots \ldots ..\right)$ is a maximum, subject to the constraints

The problem of maximizing a function $F\left(x_{1}, x_{2}, x_{3}, \ldots \ldots\right)$ of several variables, subject to the constraints $f\left(x_{1}, x_{2}, x_{3}, \ldots \ldots\right)=0, f\left(x_{1}, x_{2}, x_{3}, \ldots \ldots\right)=0$, etc., is most conveniently handled by the method of Lagrange multipliers. We introduce the new function
and set all its derivatives equal to zero:

In our case it's a little easier to work with the logarithm of Q, instead of Q itself__this turns the products into sums. Since the logarithm is a monotonic function of its argument, the maxima of Q and $\ln (Q)$ occur at the same point. So we let
where α and β are the Lagrange multipliers.

1. Distinguishable particles:

Assuming the relevant occupation numbers $\left(N_{n}\right)$ are large, we can invoke stirling's approximation:

It follows that

The most probable occupation numbers, for distinguishable particles, are

2. Identical fermions:

Assume $N_{n} \gg 1$ and $d_{n} \gg N_{n}$, so the stirling's approximation applies

The most probable occupation numbers, for identical fermions, are

3. Identical bosons:

Assuming $N_{n} \gg 1$ and using stirling's approximation

$$
\begin{gathered}
d_{n} \gg 1 \\
\Rightarrow
\end{gathered}
$$

5.4.4 Physical significance of α and β

The parameters α and β came into the story as Lagrange multipliers, associated with the total number of particles and the total energy.

Mathematically, they are determined by substituting the most probable occupation numbers N_{n} back into the constraints.

To carry out the summation, E_{n} and d_{n} should be know for particular potential.

By using an example to do this: ideal gas
Idea gas: a large number of noninteracting particles, all with the same mass, in the three dimensional infinite square well a box!

We know that the allowed energies of the particle are where

A shell of thickness $d k$ contains a volume
so the "degeneracy" is (the number of electron states in the shell)

For distinguishable particles, the first constraint becomes

$$
\int_{0}^{\infty} x^{n} e^{-a x} d x=\frac{n!}{a^{n+1}}
$$

In the k-space, the sum will be converted into an integral, treating k as a continuous variable, then

$$
\int_{0}^{\infty} x^{2 n} e^{-a x^{2}} d x=\frac{1 \cdot 3 \cdot 5 \cdots \cdots(2 n-1)}{2^{n+1} a^{n}} \sqrt{\frac{\pi}{a}} \Rightarrow
$$

The second constraint
becomes

Or, putting in :

The average kinetic energy of an atom at temperature T, in classical mechanic, is

This suggests that β is related to the temperature:

Different substances in thermal equilibrium with one another have the same value of β, and which can be adopted as s definition of T.

Then

It is customary to replace α by the so-called chemical potential,

By using the chemical potential, we can rewrite the most probable number of particles in a particular (one-particle) state with energy ε :

\square
 Maxwell-Boltzmann distribution

The Maxwell-Boltzmann distribution is the classical result, for distinguishable particles; the Fermi-Dirac distribution applies to identical fermions, and the Bose-Einstein distribution is for identical bosons.

Maxwell-Boltzmann distribution

The Fermi-Dirac distribution has a particularly simple behavior as

As

All states are filled, up to an energy $\mu(0)$, and none are occupied for energies above $\mu(0)$. Evidently the chemical potential at absolute zero is precisely the Fermi energy:

Bose-Einstein distribution

\Rightarrow
\square

Returning to the special case of an ideal gas, for distinguishable particles we found that the total energy at temperature T is
and the chemical potential is

5.4.5 The Blackbody Spectrum

Photons (quantum of the electromagnetic field) are identical bosons with spin 1, but they are very special, because they are massless particles, and hence intrinsically relativistic. There are four properties belong to nonrelativistic quantum mechanics:
(1) Energy:
(2) Wave number:
(3) Spin: two spin states occur, $m=1$ or -1 .
(4) The number of the photons are not conserved:

For free photons in a box of volume V, d_{k} is given by
multiplied by 2 for two spin states, and expressed in terms of

So the energy density,

That is

We introduce energy density per unit frequency:

This is Plank's famous formula for the blackbody spectrum, giving the energy per unit volume, per unit frequency, for an electromagnetic field in equilibrium at temperature T.

ᄃ

\square

$1.5 e+157.5 e+155.0 e+15 \quad 3.7 e+143.0 e+142.5 e+142.1 e+141.9 e+141.7 e+141.5 e+14$

