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Chapter 5

IDENTICAL PARTICLES

5.1 Two-Particle Systems
5.2 Atoms
5.3 Solids




5.4 Quantum Statistical Mechanics

If we have a large number of N particles, in thermal equilibrium at
temperature 7, what is the probability that a particle would be found to
have the specific energy, £?

The fundamental assumption of statistical mechanics is that in thermal
equilibrium every distinct state with the same total energy, £, is equally
probable.

The temperature, 7, is a measure of the total energy of a system in t/rermal

equilibrium in classical mechanics. What is the new in quantum mechanics?
How to count the distinct states!

Why? Give a example to demonstrate!




5.4.1 An Example

Suppose we have just have noninteracting particles, A, B, and C, (all of
mass 1) in the one-dimensional infinite square well. The total energy is

where n,,n,, and 1 are positive integers. Now suppose, for the sake of
argument, that total energy

which is to say,

-




Thus (1,11, ) can be one of the following:

total

For example, (n,,n,n.-)=(11,11,11) means n,=11, n,=11, n=11,and A,B,C 1in
the single states

If the particles are distinguishable, the three-particle state 1s

The total number of probable (1,,7,7n,)1s 13.




The most important quantity is the number of particles in each state, that is, the
occupation number, N , for the single state

(HE#G) : The collection of all occupation numbers for a given
(3-particle) state we will call the configuration.

If the particles are distinguishable, each of these (1n,,1,n1, )

represents ¢ distinct quantum state, and the fundamental
assumption of statistical mechanics says that in thermal
equilibrium they are all equally likely.

If all the particles are in , the configurati

one state




and 1sin  , the configuration is

=

—~—

three different states

and 1sin  , the configuration is

g

—~—

three different states




If 1S In ,onein ,and 1S In , the configuration is

six different states

Of course, the last is the most probable configuration, because it can be
achieved 1n six different ways, whereas the middle two occur three ways, and
the first only one.




Under the above condition, if we select one of these three particles at random,
what is the probability (7, )of getting a specific (allowed) energy £, ?

In the

E, : Only the configuration = Probability 3/13 }
two particles are in £,

In the configuration,

. the configuration == Probability 3/13 }
one particle 1s in £ => Probability 1/3

In the configuration,
one particle 1s in £ => Probability 1/3

the configuration =) Probability 6/13 }




. Only the configuration=) Probability 6/ 13}

In the configuration, g

one particle is in £, Probability 1/3

In the configuration,

: Only the configuration =) Probability 1/ 13}
three particles are in £

=> Probability 3/3

Similarly

We can check this by total probability

Above analysis is based on the assumption that the three particles are
distinguishable!




For fermions, no two particles are in the same state. This antisymmetrization
requirement exclude the configurations where two particles are in the same state.
Only the fourth configuration is available now!

. Only one configuration = Probability |

In the configuration, B
one particle is in £« =) Probability 1/3

. In this configuration, one particle is in £, =) Probability 1/3

: In this configuration, one particle is in £, =) Probability 1/3




For bosons, each configuration enables one state, so

In this configuration, two

E, : The third configurations=s) Probability 1/4 }
particles are in £/ =) Probability 2/3

In the configuration,

configuration == Probability 1/4 }
one particle 1s in £ => Probability 1/3

In the configuration,
one particle 1s in £ => Probability 1/3

the configuration = Probability 1/4 }

Similarly




(1) This example shows that the nature of the particles determines the
counting properties, or the statistical properties! The number of internal
distinct states 1s different and the probability of getting specific energy
1s different too.

(2) This example gives a system of three particles. If the number of
particles in huge, we can conclude: The distribution of individual particle

energies, at equilibrium, is simply their distribution in the most probable
configuration.




5.4.2 The General Case

Now consider an arbitrary potential, for which one particle energies are

with degeneracies

Suppose we put /N particles (all with the same mass) into this potential; we
are interested in the configuration

for which there are N, particles with energy £, V, particles with energy £,
and so on.

Now we consider general question: how many distinct states correspond
to this particular configuration?




The answer: The number of the distinct states O(N,,N,,N, ) depends
on whether the particles are distinguishable, identical fermions, or
identical bosons.

(1) Choose N, from N for energy bin: the binomial coefficient

(2) Arrangement of the /V, particles within the bin on the degenerate d, states:




(3) Thus the number of ways to put /V, particles, selected from a total population
of NV, into a bin containing ¢, distinct option, is

(4) The same goes for energy bin £, of course, except that there are now only
N-N, particles left to work with:

(5) Finally, it follows that




(1) The particles are identical.

(2) The antisymmetrization requires that only one particle can occupy any
given state.

Here we pick N, draws from d, draws to locate particles.




(1) The particles are identical.

(2) Although the wave function of the NV-particle
state 1s symmetry, more than one particles can
occupy the draws in certain bin.




5.4.3 The Most Probable Configuration

In thermal equilibrium, every state with a given total energy £ and a given
particle number /V is equally likely. So the most probable configuration (/V,,
) 1s the one that can be achieved in the largest number of
different ways it 1s that particular configuration for which
) 1s a maximum, subject to the constraints

The problem of maximizing a function F(x,, x,, x5, ) of several variables,
subject to the constraints f (x,, x,, x5, ‘ )=0, etc., 1S
most conveniently handled by the method of . We
introduce the new function




and set all its derivatives equal to zero:

In our case it’s a little easier to work with the of Q, instead of Q
itself this turns the products into sums. Since the logarithm is a
monotonic function of its argument, the maxima of O and In(Q) occur at the
same point. So we let

where o and / are the Lagrange multipliers.




Assuming the relevant occupation numbers (/V,) are large, we can invoke




It follows that

The most probable occupation numbers, for distinguishable particles, are




Assume N, >>1 and d >>N,, so the applies

n’




The most probable occupation numbers, for identical fermions, are




Assuming N, >>1 and using







5.4.4 Physical significance of « and f

The parameters ¢ and f came into the story as Lagrange multipliers, associated
with the total number of particles and the total energy.

Mathematically, they are determined by substituting the most probable
occupation numbers /N, back into the constraints.

To carry out the summation, £, and d, should be know for particular potential.




By using to do this: ideal gas

Idea gas: a large number of noninteracting particles, all with the same mass,
in the three dimensional infinite square well a box!

We know that the allowed energies of the particle are

where

A shell of thickness dk contains a volume

so the “degeneracy” 1s (the number of
electron states in the shell )




For distinguishable particles, the first constraint becomes

. =)

In the k-space, the sum will be converted into an integral, treating k as a
continuous variable, then

=




The second constraint becomes

Or, putting in

=

The average kinetic energy of an atom at temperature 7, in classical mechanic,

IN

TN

Boltzmann constant




This suggests that £ 1s related to the temperature:

Different substances in thermal equilibrium with one another have the same
value of £, and which can be adopted as s definition of 7.

Then

It 1s customary to replace a by the so-called chemical potential,

=




By using the chemical potential, we can rewrite the most probable number of
particles in a particular (one-particle) state with energy ¢ :

=

The 1s the classical result, for distinguishable
particles; the applies to identical fermions, and the
1s for identical bosons.




probabiity

velocity




has a particularly simple behavior as

All states are filled, up to an energy x(0), and none are occupied for energies
above 1(0). Evidently the chemical potential at absolute zero is precisely the
Fermi energy:







Returning to the special case of an ideal gas, for distinguishable particles we
found that the total energy at temperature 7'1s

and the chemical potential is




5.4.5 The Blackbody Spectrum

Photons (quantum of the electromagnetic field) are identical bosons with
spin 1, but they are very special, because they are massless particles, and
hence intrinsically relativistic. There are four properties belong to
nonrelativistic quantum mechanics:

(1) Energy:
(2) Wave number:
(3) Spin: two spin states occur, m=1 or —1.

(4) The number of the photons are not conserved:

=




For free photons in a box of volume V, d, 1s given by

multiplied by 2 for two spin states, and expressed in terms of

So the energy density,

N\

That 1s




We introduce energy density per unit frequency:

This 1s Plank’s famous formula for the blackbody spectrum, giving the energy

per unit volume, per unit frequency, for an electromagnetic field in equilibrium at
temperature 7.
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