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5.4  Quantum Statistical Mechanics

If we have a large number of N particles, in thermal equilibrium at 

temperature T, what is the probability that a particle would be found to 

have the specific energy, Ej?

The fundamental assumption of statistical mechanics is that in thermal 

equilibrium every distinct state with the same total energy, E, is equally 

probable. 

The temperature, T, is a measure of the total energy of a system in thermal 

equilibrium in classical mechanics. What is the new in quantum mechanics?

How to count the distinct states!

Why? Give a example to demonstrate!



5.4.1  An Example

Suppose we have just have three noninteracting particles, A, B, and C, (all of 

mass m) in the one-dimensional infinite square well. The total energy is 
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where nA,nB, and nC are positive integers. Now suppose, for the sake of 

argument, that total energyargument, that total energy
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Thus (nA,nB,nC ) can be one of the following:
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For example, (nA,nB,nC )=(11,11,11) means nA=11, nB=11, nC=11, and A,B,C in 

the single states 

);(11 AA xψψ = );(11 BB xψψ = ).(11 CC xψψ =

The total number of probable (nA,nB,nC ) is 13.

If the particles are distinguishable, the three-particle state is
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If the particles are distinguishable, each of these (nA,nB,nC )  

represents a distinct quantum state, and the fundamental 

1. Distinguishable condition:

Configuration(排布）: The collection of all occupation numbers for a given 

(3-particle) state we will call the configuration.
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The most important quantity is the number of particles in each state, that is, the 

occupation number, Nn, for the single state            .

A B C

represents a distinct quantum state, and the fundamental 

assumption of statistical mechanics says that in thermal 

equilibrium they are all equally likely. 
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If all the three particles are in              , the configuration is)(11 xψ
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If two are in         and one is in       , the configuration is13ψ 5ψ
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If two are in         and one is in       , the configuration is1ψ 19ψ
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If one is in        , one in      , and one is in       , the configuration is5ψ
7ψ
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Of course, the last is the most probable configuration, because it can be 

achieved in six different ways, whereas the middle two occur three ways, and 

the first only one.

six different states



Under the above condition, if we select one of these three particles at random, 

what is the probability (Pn)of getting a specific (allowed) energy En ？

E1 : Only the third configuration Probability 3/13

In the third configuration, 
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13

1

3

1

13

3
=×

the fourth configuration Probability 6/13

In the fourth configuration, 
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E7 : Only the fourth configuration Probability 6/13

In the fourth configuration, 

one particle is in E7

Probability 1/3 13
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E11 : Only the first configuration Probability 1/13

In the first configuration, 

three particles are in E11
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We can check this by total probability
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Above analysis is based on the assumption that the three particles are 

distinguishable!



2. Identical fermions:

For fermions, no two particles are in the same state. This antisymmetrization 

requirement exclude the configurations where two particles are in the same state. 

Only the fourth configuration is available now!

E1 : 0
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3. Identical bosons:

For bosons, each configuration enables one state, so

E1 : The third configurations Probability 1/4

In this configuration, two 

particles are in E1
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Conclusion:

(1) This example shows that the nature of the particles determines the 

counting properties, or the statistical properties! The number of internal 

distinct states is different and the probability of getting specific energy 

is different too.

(2) This example gives a system of three particles. If the number of 

particles in huge, we can conclude: The distribution of individual particle particles in huge, we can conclude: The distribution of individual particle 

energies, at equilibrium, is simply their distribution in the most probable 

configuration.



5.4.2  The General Case

Now consider an arbitrary potential, for which one particle energies are
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with degeneracies
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Suppose we put N particles (all with the same mass) into this potential; we 

are interested in the configurationare interested in the configuration
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for which there are N1 particles with energy E1, N2 particles with energy E2, 

and so on.

Now we consider general question: how many distinct states correspond 

to this particular configuration?



The answer: The number of the distinct states Q(N1,N2,N3,……) depends 

on whether the particles are distinguishable, identical fermions, or 

identical bosons.

1. Distinguishable particles:

(1) Choose N1 from N for energy bin: the binomial coefficient
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(2) Arrangement of the N1 particles within the bin on the degenerate d1 states:
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(3) Thus the number of ways to put N1 particles, selected from a total population 

of N, into a bin containing d1 distinct option, is
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(4) The same goes for energy bin E2, of course, except that there are now only 

N-N1 particles left to work with:
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2. Identical fermions:
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(2) The antisymmetrization requires that only one particle can occupy any 

given state.

Here we pick N1 draws from d1 draws to locate particles.
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3. Identical bosons:

1N

1d1 2(1) The particles are identical. 1N

(2) Although the wave function of the N-particle 

state is symmetry, more than one particles can 

occupy the draws in certain bin.
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5.4.3  The Most Probable Configuration

In thermal equilibrium, every state with a given total energy E and a given 

particle number N is equally likely. So the most probable configuration (N1, 

N2, N3, ……) is the one that can be achieved in the largest number of 

different ways—— it is that particular configuration for which 

Q(N1,N2,N3,……..) is a maximum, subject to the constraints
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The problem of maximizing a function F(x1, x2, x3,……) of several variables, 

subject to the constraints f (x1, x2, x3,……)=0,  f (x1, x2, x3,……)=0, etc., is 

most conveniently handled by the method of Lagrange multipliers. We 

introduce the new function
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and set all its derivatives equal to zero:
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In our case it’s a little easier to work with the logarithm of Q, instead of Q

itself——this turns the products into sums. Since the logarithm is a 

monotonic function of its argument, the maxima of Q and ln(Q) occur at the 

same point. So we letsame point. So we let
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1. Distinguishable particles:
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Assuming the relevant occupation numbers (Nn) are large, we can invoke 

stirling’s approximation:
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2. Identical fermions:
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Assume Nn>>1 and dn>>Nn, so the stirling’s approximation applies
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The most probable occupation numbers, for identical fermions, are
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3. Identical bosons:
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5.4.4  Physical significance of α and β

The parameters α and β came into the story as Lagrange multipliers, associated 

with the total number of particles and the total energy.

Mathematically, they are determined by substituting the most probable 

occupation numbers Nn back into the constraints.
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To carry out the summation, En and dn should be know for particular potential.



By using an example to do this: ideal gas

Idea gas: a large number of noninteracting particles, all with the same mass, 

in the three dimensional infinite square well—— a box!

We know that the allowed energies of the particle are
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For distinguishable particles, the first constraint becomes

In the k-space, the sum will be converted into an integral, treating k as a 

continuous variable, then
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The second constraint                        becomes

so
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The average kinetic energy of an atom at temperature T, in classical mechanic, 
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This suggests that β is related to the temperature:

TkB
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Different substances in thermal equilibrium with one another have the same 

value of  β , and which can be adopted as s definition of T.
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It is customary to replace α by the so-called chemical potential,
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By using the chemical potential, we can rewrite the most probable number of 

particles in a particular (one-particle) state with energy ε :
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The Maxwell-Boltzmann distribution is the classical result, for distinguishable 

particles; the Fermi-Dirac distribution applies to identical fermions, and the 

Bose-Einstein distribution is for identical bosons.



( ) TkBen
/

)(
µεε −−=





>∞

<

).0( if    ,

),0( if    ,0

µε

µε( ) →− TkBe
/µε

0→T

Maxwell-Boltzmann distribution

( ) →−− TkBe
/µε





<∞

>

).0( if    ,

),0( if    ,0

µε

µε

2

2

1
mv=ε

( ) Tkmv Bevn
2/2

)(
µ−−=



The Fermi-Dirac distribution has a particularly simple behavior as                 :0→T
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All states are filled, up to an energy µ(0), and none are occupied for energies 

above µ(0). Evidently the chemical potential at absolute zero is precisely the 

Fermi energy:
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Returning to the special case of an ideal gas, for distinguishable particles we 

found that the total energy at temperature T is

TNkE B
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and the chemical potential is

2/3
22








=−

TmkV

N
e

hπα

  N
223 π







=
TmkV

e
B

TkT B )( αµ −≡

















+







=

TmkV

N
TkT

B

B

22
ln

2

3
ln )(

hπ
µ



5.4.5 The Blackbody Spectrum

Photons (quantum of the electromagnetic field) are identical bosons with 

spin 1, but they are very special, because they are massless particles, and 

hence intrinsically relativistic. There are four properties belong to 

nonrelativistic quantum mechanics:

(1) Energy:

(2) Wave number:
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(3) Spin: two spin states occur, m=1 or –1.

(4) The number of the photons are not conserved:
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For free photons in a box of volume V, dk is given by
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We introduce energy density per unit frequency:

This is Plank’s famous formula for the blackbody spectrum, giving the energy 

per unit volume, per unit frequency, for an electromagnetic field in equilibrium at 

temperature T.
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