量子力学
 Quantum mechanics

School of Physics and Information Technology Shaanxi Normal University

Chapter 6

Time-independent Perturbation Theory

Problem

Suppose we have solved the (time - independen t) Schr ödinger equation for some potential, now we perturb the potential sligntly.

Difficulty \& why

For this problem, we'd like to solve for the new eigenfunctions and eigenvalues:

$$
\mathrm{H} \Psi_{\mathrm{n}}=E_{\mathrm{n}} \Psi_{n},
$$

But unless we are very lucky, we're unlikely to be able to solve the Shröndi nger equation exactly, for this more co mplicated potential.

What

Perturbation theory is a systematic procedure for obtai ning approximate solutions to the perturbed problem by buiding on the known exact solutions to the unperturbed case.

OUTLINE

- Non-degenerate perturbation theory
- Degenerate perturbation theory
- Some examples for application

Non-degenerate Perturbation Theory

- General formulation
- First-order theory
- Second-order energies

General formulation

The unperturbed case

Time - independent Shrödinger equation :

$$
H^{0} \Psi_{\mathrm{n}}^{0}=E_{n}^{0} \Psi_{n}^{0}
$$

Eigenvalues: E_{n}^{0}
Eigenfunctions: Ψ_{n}^{0}
Requirement:

$$
\left\langle\Psi_{n}^{0} \mid \Psi_{m}^{0}\right\rangle=\delta_{n m}
$$

Considering the perturbed case, we should solve

 for the new eigenvalues and eigenfunctions. We can write the Hamiltonian of the new system into the following two parts

Additional
Hamiltonian
of the
perturbed system

Hamiltonian of the unperturbed system

Rewrite the new Hamiltonian as the sum of two terms

$$
H=1+1+\begin{gathered}
\text { A small number ;later } \\
\text { we will crank it up to } \\
\text { 1, and H will be the true } \\
\text { exact Hamiltonian }
\end{gathered}
$$

Write the $\mathrm{n}^{\text {th }}$ eigenfunction and eigenvalue as power series in λ as follows

$$
\begin{aligned}
& \Psi_{n}=\Psi_{n}^{0}+\lambda \Psi_{n}^{1}+\lambda^{2} \Psi_{n}^{2}+\ldots \\
& E_{n}=E_{n}^{0}+\lambda E_{n}^{1}+\lambda^{2} E_{n}^{2}+\ldots \\
& \begin{array}{c}
\text { The first-order } \\
\text { correction }
\end{array} \\
& \begin{array}{c}
\text { The second-order } \\
\text { correction }
\end{array}
\end{aligned}
$$

$H \Psi_{n}=E_{n} \Psi_{n}$

Plugging the above $\mathrm{H}, \psi_{\mathrm{n}}$ and E_{n} into the time-independent equation and
Collecting like powers of λ

$$
\begin{gathered}
H^{0} \Psi_{\mathrm{n}}^{0}+\lambda\left(H^{0} \Psi_{\mathrm{n}}^{1}+H^{1} \Psi\right)+\lambda^{2}\left(H^{0} \Psi_{\mathrm{n}}^{2}+H^{\prime} \Psi_{n}^{1}\right)+\cdots \\
=E_{n}^{0} \Psi_{n}^{0}+\lambda\left(E_{n}^{0} \Psi_{n}^{1}+E_{n}^{1} \Psi_{n}^{0}\right)+\lambda^{2}\left(E_{n}^{0} \Psi_{n}^{2}+E_{n}^{1} \Psi_{n}^{1}+E_{n}^{2} \Psi_{n}^{0}\right)+\cdots
\end{gathered}
$$

λ is a device to keep track of the different orders

To lowest order:

$$
H^{0} \Psi_{\mathrm{n}}^{0}=E_{n}^{0} \Psi_{n}^{0}
$$

To first order:

$$
H^{0} \Psi_{\mathrm{n}}^{1}+H^{1} \Psi_{n}^{0}=E_{n}^{0} \Psi_{n}^{1}+E_{n}^{1} \Psi_{n}^{0}
$$

To second order:

$$
H^{0} \Psi_{n}^{2}+H^{\prime} \Psi_{n}^{1}=E_{n}^{0} \Psi_{n}^{2}+E_{n}^{1} \Psi_{n}^{1}+E_{n}^{2} \Psi_{n}^{0}
$$

And so on

First-Order Theory

- The first-order correction to the energy
- The first-order correction to the wave function

The first-order

 correction to the energy$$
H^{0} \Psi_{\mathrm{n}}^{1}+H^{1} \Psi_{n}^{0}=E_{n}^{0} \Psi_{n}^{1}+E_{n}^{1} \Psi_{n}^{0}
$$

$\left\langle\Psi_{n}^{0} \mid H^{0} \Psi_{n}^{1}\right\rangle+\left\langle\Psi_{n}^{0} \mid H^{0} \Psi_{n}^{0}\right\rangle=E_{n}^{0}\left\langle\Psi_{n}^{0} \mid \Psi_{n}^{1}\right\rangle+E_{n}^{1}\left\langle\Psi_{n}^{0} \mid \Psi_{n}^{0}\right\rangle$

And,

$$
\begin{aligned}
\left\langle\Psi_{n}^{0} \mid \Psi_{n}^{0}\right\rangle & =1 \\
\left\langle\Psi_{n}^{0} \mid H^{0} \Psi_{n}^{1}\right\rangle & =E_{n}^{0}\left\langle\Psi_{n}^{0} \mid \Psi_{n}^{1}\right\rangle
\end{aligned}
$$

So,

$$
E_{n}^{1}=\left\langle\Psi_{n}^{0}\right| H^{\prime}\left|\Psi_{n}^{0}\right\rangle
$$

Results: The first-order correction to the energy is the expectation value of the perturbation in the unperturbed state.

Example

Figure 6.2: Constant perturbation over the whole well.

Figure 6.3: Constant perturbation over half the well.

Example. The unperturbed wave functions for the infinite square well are (Equation 2.24)

$$
\psi_{n}^{0}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi}{a} x\right)
$$

Suppose first that we perturb the system by simply raising the "floor" of the well by a constant amount V_{0} (Figure 6.2). In that case $H^{\prime}=V_{0}$, and the first-order correction to the energy of the $n^{\text {th }}$ state is

$$
E_{n}^{1}=\left\langle\psi_{n}^{0}\right| V_{0}\left|\psi_{n}^{0}\right\rangle=V_{0}\left\langle\psi_{n}^{0} \mid \psi_{n}^{0}\right\rangle=V_{0}
$$

The corrected energy levels, then, are $E_{n} \cong E_{n}^{0}+V_{0}$; they are simply lifted by the amount V_{0}. Of course! The only surprising thing is that in this case the first-order theory yields the exact answer. Evidently, for a constant perturbation all the higher corrections vanish. ${ }^{2}$ If, on the other hand, the perturbation extends only halfway across the well (Figure 6.3), then

$$
E_{n}^{1}=\frac{2 V_{0}}{a} \int_{0}^{a / 2} \sin ^{2}\left(\frac{n \pi}{a} x\right) d x=\frac{V_{0}}{2}
$$

In this case every energy level is lifted by $V_{0} / 2$. That's not the exact result, presumably. but it does seem reasonable as a first-order approximation.

The first-order correction to the wave function

Rewrite equation

$$
H^{0} \Psi_{\mathrm{n}}^{1}+H^{1} \Psi_{n}^{0}=E_{n}^{0} \Psi_{n}^{1}+E_{n}^{1} \Psi_{n}^{0}
$$

$$
\left(H^{0}-E_{n}^{0}\right) \Psi_{n}^{1}=-\left(H^{\prime}-E_{n}^{1}\right) \Psi_{n}^{0}
$$

The unperturbed wave functions constitute a complete set

$$
\Psi_{\mathrm{n}}^{1}=\sum_{m \neq n} C_{m}^{(n)} \Psi_{m}^{0}
$$

$$
\begin{gathered}
\text { Additional, } \\
H^{0} \Psi_{\mathrm{n}}^{0}=E_{n}^{0} \Psi_{n}^{0} \quad \sum_{m \neq n}\left(E_{m}^{0}-E_{n}^{0}\right) C_{m}^{(n)} \Psi_{m}^{0}=-\left(H^{\prime}-E_{n}^{1}\right) \Psi_{n}^{0}
\end{gathered}
$$

Take the inner product with Ψ_{l}^{0}

$$
\sum_{m \neq n}\left(E_{m}^{0}-E_{n}^{0}\right) C_{m}^{(n)}\left\langle\Psi_{l}^{0} \mid \Psi_{m}^{0}\right\rangle=-\left\langle\Psi_{l}^{0}\right| H^{\prime}\left|\Psi_{n}^{0}\right\rangle+E_{n}^{1}\left\langle\Psi_{l}^{0} \mid \Psi_{n}^{0}\right\rangle
$$

If $1=\mathrm{n}$, we get E_{n}^{1};

$$
C_{m}^{(n)}=\frac{\left\langle\Psi_{m}^{0}\right| H^{\prime}\left|\Psi_{n}^{0}\right\rangle}{E_{n}^{0}-E_{m}^{0}}
$$

$$
\Psi_{n}^{1}=\sum_{m \neq n} \frac{\left\langle\Psi_{m}^{0}\right| H^{\prime}\left|\Psi_{n}^{0}\right\rangle}{E_{n}^{0}-E_{m}^{0}} \Psi_{m}^{0}
$$

Notice: although perturbation theory often yields surprising by accurate energies, the wave functions are notoriously poor.

Second-order energies

$$
H^{0} \Psi_{\mathrm{n}}^{2}+H^{1} \Psi_{n}^{1}=E_{n}^{0} \Psi_{n}^{2}+E_{n}^{1} \Psi_{n}^{1}+E_{n}^{2} \Psi_{n}^{0}
$$

1 Take the inner product with Ψ_{n}^{0}

$\left\langle\Psi_{n}^{0} \mid H^{0} \Psi_{n}^{2}\right\rangle+\left\langle\Psi_{n}^{0} \mid H \Psi_{n}^{1}\right\rangle=E_{n}^{0}\left\langle\Psi_{n}^{0} \mid \Psi_{n}^{2}\right\rangle+E_{n}^{1}\left\langle\Psi_{n}^{0} \mid \Psi_{n}^{1}\right\rangle+E_{n}^{2}\left\langle\Psi_{n}^{0} \mid \Psi_{n}^{0}\right\rangle$
$\left\langle\Psi_{n}^{0} \mid H^{0} \Psi_{n}^{2}\right\rangle=\left\langle H^{0} \Psi_{n}^{0} \mid \Psi_{n}^{2}\right\rangle=E_{n}^{0}\left\langle\Psi_{n}^{0} \mid \Psi_{n}^{2}\right\rangle<$ The Hermiticity of H^{0}

$$
\begin{aligned}
& \text { Meanwhile, }\left\langle\Psi_{n}^{0} \mid \Psi_{n}^{0}\right\rangle=1 ; \\
& \left\langle\Psi_{n}^{0} \mid \Psi_{n}^{1}\right\rangle=\sum_{m \neq n} C_{m}^{(n)}\left\langle\Psi_{\mathrm{n}}^{0} \mid \Psi_{m}^{0}\right\rangle
\end{aligned}
$$

$$
\rightharpoonup E_{n}^{2}=\sum_{m \neq n} \frac{\left.\left|\left\langle\Psi_{m}^{0}\right| H^{\prime}\right| \Psi_{n}^{0}\right\rangle\left.\right|^{2}}{E_{n}^{0}-E_{m}^{0}}
$$

We could proceed to calculate the second-order correction to the function, the third-order correction to the energy, and so on, but in practice, the above results is ordinarily as high as it is useful to pursue this method.

Results

Correction to the eigenvalue:

$$
\begin{equation*}
E_{n}=E_{n}^{0}+H_{n n}^{\prime}+\sum_{m \neq n} \frac{\left.\left|\left\langle\Psi_{m}^{0}\right| H^{\prime}\right| \Psi_{n}^{0}\right\rangle\left.\right|^{2}}{E_{n}^{0}-E_{m}^{0}}+\cdots \tag{1}
\end{equation*}
$$

Correction to the eigenfunction:

$$
\begin{equation*}
\Psi_{n}=\Psi_{n}^{0}+\sum_{m \neq n} \frac{\left\langle\Psi_{m}^{0}\right| H^{\prime}\left|\Psi_{n}^{0}\right\rangle}{E_{n}^{0}-E_{m}^{0}} \Psi_{m}^{0}+\cdots \tag{2}
\end{equation*}
$$

Degenerate Perturbation Theory

- Two-ford degeneracy
- Higher-order degeneracy

Non-degenerate perturbation theory fail?

- In many cases, where two (or more) distinct states share the same energy, non-degenerate perturbation theory fail!
- Sometimes, two energy levels exists so near that non-degenerate perturbation theory cannot give us a satisfied answer.
So, we must look for some other way to handle the problem.

Two-ford degeneracy

In order to see how the method generalizes,

 we begin with the twofold degeneracy

$$
\mathrm{H}^{0} \Psi_{\mathrm{b}}^{0}=E^{0} \Psi_{b}^{0}
$$

$$
\left\langle\Psi_{\mathrm{a}}^{0} \mid \Psi_{\mathrm{b}}^{0}\right\rangle=0
$$

"Lifting of a degeneracy by a paerturbation

Suppose,

$$
\mathrm{H}^{0} \Psi_{\mathrm{a}}^{0}=E^{0} \Psi_{a}^{0},
$$

The perturbation will "break" the degeneracy
${ }_{\text {Any linear combination of the above states }}\left\langle\Psi^{0}=\alpha \Psi_{\mathrm{a}}^{0}+\beta \Psi_{\mathrm{b}}^{0}\right.$
is still an eigenstate of H^{0}, with the same eigenvalue E^{0}

$$
\mathrm{H}^{0} \Psi^{0}=E^{0} \Psi^{0}
$$

Essential problem: When we turn off the perturbation, the "upper" state reduces down to one linear combination of Ψ_{a}^{0} and Ψ_{b}^{0}, and the "lower" state reduce to some other linear combination, but we don't know a priori what these good linear combination will be. For this reason we can't even calculate the first-order energy (equation 1) because we don't know what unperturbed states to use.

As before, we write $\mathrm{H}, \mathrm{E}, \psi$ in the following form

$$
\begin{aligned}
& \mathrm{H}=\mathrm{H}^{0}+\lambda H^{\prime}, \\
& E=E^{0}+\lambda E^{1}+\lambda^{2} E^{2}+\cdots, \\
& \Psi=\Psi^{0}+\lambda \Psi^{1}+\lambda^{2} \Psi^{2}+\cdots
\end{aligned}
$$

Plug into the stationary equation
To lowest order, $\mathrm{H}^{0} \Psi_{\mathrm{n}}^{0}=E_{n}^{0} \Psi_{n}^{0}$
To first order, $H^{0} \Psi^{1}+H^{1} \Psi^{0}=E^{0} \Psi^{1}+E^{1} \Psi^{0}$

$$
H^{0} \Psi^{1}+H^{\prime} \Psi^{0}=E^{0} \Psi^{1}+E^{1} \Psi^{0}
$$

Take the inner product wi th Ψ_{a}^{0}

$$
\left\langle\Psi_{a}^{0} \mid H^{0} \Psi^{1}\right\rangle+\left\langle\Psi_{a}^{0} \mid H^{1} \Psi^{0}\right\rangle=E^{0}\left\langle\Psi_{a}^{0} \mid \Psi^{1}\right\rangle+E^{1}\left\langle\Psi_{a}^{0} \mid \Psi^{0}\right\rangle
$$

$$
\begin{aligned}
& \mathrm{H}^{0} \Psi_{\mathrm{a}}^{0}=E^{0} \Psi_{a}^{0}, \\
& \mathrm{H}^{0} \Psi_{\mathrm{b}}^{0}=E^{0} \Psi_{b}^{0}, \\
& \left\langle\Psi_{\mathrm{a}}^{0} \mid \Psi_{\mathrm{b}}^{0}\right\rangle=0, \\
& \Psi^{0}=\alpha \Psi_{\mathrm{a}}^{0}+\beta \Psi_{\mathrm{b}}^{0}
\end{aligned}
$$

Meanwhile, H^{0} is Hermitian, the first term on the left cancels the first term on the right

$$
\alpha\left\langle\Psi_{\mathrm{a}}^{0}\right| H^{\prime}\left|\Psi_{\mathrm{a}}^{0}\right\rangle+\beta\left\langle\Psi_{\mathrm{a}}^{0}\right| H^{\prime}\left|\Psi_{\mathrm{b}}^{0}\right\rangle=\alpha E^{1}
$$

Results

$$
\alpha W_{a a}+\beta W_{a b}=\alpha E^{1}
$$

The "matrix elements" of H^{\prime}

Where, $W_{i j} \equiv\left\langle\Psi_{\mathrm{i}}^{0}\right| H^{\prime}\left|\Psi_{\mathrm{j}}^{0}\right\rangle,(i, j=a, b)$
Similarly, the inner product with Ψ_{b}^{0} yields

$$
\alpha W_{b a}+\beta W_{b b}=\beta E^{1}
$$

$$
\text { Eliminate } \beta W_{a b}
$$

$$
\alpha\left[W_{a b} W_{b a}-\left(E^{1}-W_{a a}\right)\left(E^{1}-W_{b b}\right)\right]=0
$$

If α is not zero, we can get the following equation

$$
\left(E^{1}\right)^{2}-E^{1}\left(W_{a a}+W_{b b}\right)+\left(W_{a a} W_{b b}-W_{a b} W_{b a}\right)=0
$$

$$
\begin{equation*}
E_{ \pm}^{1}=\frac{1}{2}\left[W_{a a}+W_{b b} \pm \sqrt{\left(W_{a a}-W_{b b}\right)^{2}+4\left|W_{a b}\right|^{2}}\right] \tag{3}
\end{equation*}
$$

The two roots correspond to the two perturbed energies

But what if

 α is zero?
How should we do in practice

Idea: It would be greatly to our advantage if

 we could somehow guess the "good" states right from the start.

1. Look around for some Hermitian operator A that commutes with H^{\prime};
2. Pick as your unperturbed states ones that are simultaneously eigenfunctions of H^{0} and A;
3. Use ordinary first-order perturbation theory.

If you can't find such an operator, you'll have to resort to Equation 3, but in practice this is seldom necessary

Theorem

Proof

Let A be a Hermitian operator that commutes with H^{\prime}.If Ψ_{a}^{0} and Ψ_{b}^{0} are eigenfunctions of A with distinct eigenvalues,
$A \Psi_{a}^{0}=\mu \Psi_{a}^{0}, A \Psi_{b}^{0}=\nu \Psi_{b}^{0}, \mu \neq \nu$,
Then $W_{a b}=0\left(\right.$ and hence Ψ_{a}^{0} and Ψ_{b}^{0} are the "good" states to use in perturbation theory).

$$
\begin{aligned}
& \text { Byassumption, }\left[A, H^{\prime}\right]=0 \text {, so } \\
& \left\langle\Psi_{a}^{0} \mid\left[A, H^{\prime}\right] \Psi_{b}^{0}\right\rangle=0 \\
& =\left\langle\Psi_{a}^{0} \mid A H^{\prime} \Psi_{b}^{0}\right\rangle-\left\langle\Psi_{a}^{0} \mid H^{\prime} A \Psi_{b}^{0}\right\rangle \\
& =\left\langle A \Psi_{a}^{0} \mid H^{\prime} \Psi_{b}^{0}\right\rangle-\left\langle\Psi_{a}^{0} \mid H^{\prime} \nu \Psi_{b}^{0}\right\rangle \\
& =(\mu-v)\left\langle\Psi_{a}^{0} \mid H^{\prime} \Psi_{b}^{0}\right\rangle=(\mu-v) W_{a b} .
\end{aligned}
$$

But $\mu \neq \nu, \operatorname{so} W_{a b}=0$. QED

Higher-order degeneracy

$$
\begin{aligned}
& E^{0}=E_{n}^{0}, \Psi^{0}=\sum \mathrm{a}_{k} \Psi_{n k}^{0}, \\
& H^{0} \Psi^{1}+H^{1} \Psi^{0}=E^{0} \Psi^{1}+E^{1} \Psi^{0}
\end{aligned}
$$

Matrix equation

Secular equation

$\operatorname{det}\left|H_{k^{\prime} k}^{\prime}-E^{1} \boldsymbol{\delta}_{k^{\prime} k}\right|=0 \Rightarrow$ Get E' $\begin{gathered}\text { Get } a_{k}, \\ \text { then } \psi^{0}\end{gathered}$

\uparrow Diagonalizes the perturbation H^{\prime}

If you can think of an operator A that commutes with H^{\prime}, and use the simultaneous eigenfunctions of A and H^{0}, then the W matrix will automatically be diagonal, and you won't have to fuss with solving the characteristic equation.

Example

Figure 6.5: The perturbation increases the potential by an amount V_{0} in the shaded sector.

Figure 6.6: Lifting of the degeneracy in the example (Equation 6.38).

Example. Consider the three-dimensional infinite cubical well (Problem 4.2):

$$
V(x, y, z)= \begin{cases}0, & \text { if } 0<x<a, 0<y<a, \text { and } 0<z<a \tag{6.29}\\ \infty & \text { otherwise } .\end{cases}
$$

The stationary states are

$$
\begin{equation*}
\psi_{n_{x} n_{y} n_{z}}^{0}(x, y, z)=\left(\frac{2}{a}\right)^{3 / 2} \sin \left(\frac{n_{x} \pi}{a} x\right) \sin \left(\frac{n_{y} \pi}{a} y\right) \sin \left(\frac{n_{z} \pi}{a} z\right) \tag{6.30}
\end{equation*}
$$

where n_{x}, n_{y}, and n_{z} are positive integers. The corresponding allowed energies are

$$
\begin{equation*}
E_{n_{x} n_{y} n_{z}}^{0}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right) \tag{6.31}
\end{equation*}
$$

Notice that the ground state $\left(\psi_{111}\right)$ is nondegenerate; its energy is

$$
\begin{equation*}
E_{0}^{0} \equiv 3 \frac{\pi^{2} \hbar^{2}}{2 m a^{2}} \tag{6.32}
\end{equation*}
$$

But the first excited state is (triply) degenerate:

$$
\begin{equation*}
\psi_{a} \equiv \psi_{112}, \quad \psi_{b} \equiv \psi_{121}, \text { and } \psi_{c} \equiv \psi_{211} \tag{6.33}
\end{equation*}
$$

all share the energy

$$
\begin{equation*}
E_{1}^{0} \equiv 3 \frac{\pi^{2} \hbar^{2}}{m a^{2}} \tag{6.34}
\end{equation*}
$$

Now let's introduce the perturbation

$$
H^{\prime}= \begin{cases}V_{0}, & \text { if } 0<x<a / 2 \text { and } 0<y<a / 2 \tag{6.35}\\ 0, & \text { otherwise }\end{cases}
$$

This raises the potential by an amount V_{0} in one quarter of the box (see Figure 6.5). The first-order correction to the ground state energy is given by Equation 6.9:

$$
\begin{gather*}
E_{0}^{1}=\left\langle\psi_{111}\right| H^{\prime}\left|\psi_{111}\right\rangle=\left(\frac{2}{a}\right)^{3} V_{0} \int_{0}^{a / 2} \sin ^{2}\left(\frac{\pi}{a} x\right) d x \\
\int_{0}^{a / 2} \sin ^{2}\left(\frac{\pi}{a} y\right) d y \int_{0}^{a} \sin ^{2}\left(\frac{\pi}{a} z\right) d z=\frac{1}{4} V_{0} \tag{6.36}
\end{gather*}
$$

which is just what we would expect.

For the first excited state we need the full machinery of degenerate perturbation theory. The first step is to construct the matrix W. The diagonal elements are the same as for the ground state (except that the argument of one of the sines is doubled); you can check for yourself that

$$
W_{a a}=W_{b b}=W_{c c}=\frac{1}{4} V_{0} .
$$

The off-diagonal elements are more interesting:

$$
\begin{aligned}
W_{a b}= & \left(\frac{2}{a}\right)^{3} V_{0} \int_{0}^{a / 2} \sin ^{2}\left(\frac{\pi}{a} x\right) d x \\
& \int_{0}^{a / 2} \sin \left(\frac{\pi}{a} y\right) \sin \left(\frac{2 \pi}{a} y\right) d y \int_{0}^{a} \sin \left(\frac{2 \pi}{a} z\right) \sin \left(\frac{\pi}{a} z\right) d z
\end{aligned}
$$

But the z integral is zero (as it will be also for $W_{a c}$), so

$$
W_{a b}=W_{a c}=0
$$

Finally,

$$
\begin{gathered}
W_{b c}=\left(\frac{2}{a}\right)^{3} V_{0} \int_{0}^{a / 2} \sin \left(\frac{\pi}{a} x\right) \sin \left(\frac{2 \pi}{a} x\right) d x \\
\int_{0}^{a / 2} \sin \left(\frac{2 \pi}{a} y\right) \sin \left(\frac{\pi}{a} y\right) d y \int_{0}^{a} \sin ^{2}\left(\frac{\pi}{a} z\right) d z=\frac{16}{9 \pi^{2}} V_{0}
\end{gathered}
$$

Thus

$$
W=\frac{V_{0}}{4}\left(\begin{array}{ccc}
1 & 0 & 0 \tag{6.37}\\
0 & 1 & \kappa \\
0 & \kappa & 1
\end{array}\right)
$$

where $\kappa \equiv(8 / 3 \pi)^{2} \approx 0.7205$.

The characteristic equation for W (or rather, for $4 W / V_{0}$, which is easier to work with) is

$$
(1-w)^{3}-\kappa^{2}(1-w)=0
$$

and the eigenvalues are

$$
w_{1}=1 ; \quad w_{2}=1+\kappa \approx 1.7205 ; \quad w_{3}=1-\kappa \approx 0.2795
$$

To first order in λ, then,

$$
E_{1}(\lambda)=\left\{\begin{array}{l}
E_{1}^{0}+\lambda V_{0} / 4 \tag{6.38}\\
E_{1}^{0}+\lambda(1+\kappa) V_{0} / 4 \\
E_{1}^{0}+\lambda(1-\kappa) V_{0} / 4
\end{array}\right.
$$

where E_{1}^{0} is the (common) unperturbed energy (Equation 6.34). The perturbation lifts the degeneracy, splitting E_{1}^{0} into three distinct energy levels (see Figure 6.6). Notice that if we had naively applied nondegenerate perturbation theory to this problem, we would have concluded that the first-order correction (Equation 6.9) is the
same for all three states, and equal to $V_{0} / 4$-which is actually correct only for the middle state.

Meanwhile, the "good" unperturbed states are linear combinations of the form.

$$
\psi^{0}=\alpha \psi_{a}+\beta \psi_{b}+\gamma \psi_{c},
$$

where the coefficients (α, β, and γ) form the eigenvectors of the matrix W :

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & \kappa \\
0 & \kappa & 1
\end{array}\right)\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)=w\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right) .
$$

For $w=1$ we get $\alpha=1, \beta=\gamma=0$; for $w=1 \pm \kappa$ we get $\alpha=0, \beta= \pm \gamma=1 / \sqrt{2}$. (I normalized them as I went along.) Thus the "good" states are ${ }^{4}$

$$
\psi^{0}=\left\{\begin{array}{l}
\psi_{a}, \tag{6.40}\\
\left(\psi_{b}+\psi_{c}\right) / \sqrt{2} \\
\left(\psi_{b}-\psi_{c}\right) / \sqrt{2}
\end{array}\right.
$$

Some Examples For Application

- The fine structure of hydrogen
- The zeeman effect
- Hyperfine splitting

The Fine Structure of Hydrogen

- The relativistic correction
- Spin-orbit coupling

The simplest Hamiltonian of the hydrogen

Replace \mathbf{m} by the reduced mass

Relativistic correction

Spin-orbit coupling
$\mathrm{H}=-\frac{\hbar^{2}}{2 \mathrm{~m}} \nabla^{2}-\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{r}$
I
Correct for the motion of the nucleus

Fine structure

Quantization of the Coulomb field \Rightarrow Lamb shift

The magnetic interaction between the dipole moments of the electron and the proton

Hierarchy of correction to the Bohr energies of hydrogen

Bohr energies: of order $\quad \alpha^{2} m c^{2}$
Fine structure: of order $\alpha^{4} m c^{2}$

Hyperfine s hift: of order | Lamb | $\alpha^{5} m c^{2}$ |
| :--- | :--- |
| of order | $\left(\mathrm{m} / m_{p}\right) \alpha^{4} m c^{2}$ |

An application of time-independent perturbation theory

The relativistic correction

General discussion

Classical formula

$$
\mathrm{H}=-\frac{\hbar^{2}}{2 \mathrm{~m}} \nabla^{2}-\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{r}
$$

$$
T=\frac{p^{2}}{2 \mathrm{~m}}
$$

The relativistic formula

The total relativistic energy

Express T in terms of the relativistic momentum

The relativistic momentum: $\mathrm{p}=\frac{m v}{\sqrt{1-(v /)^{2}}}$

$$
\begin{aligned}
& \begin{array}{l}
p^{2} c^{2}+m^{2} c^{4}=\frac{m^{2} v^{2} c^{2}+m^{2} c^{4}\left[1-(v /)^{2}\right]}{1-(v /)^{2}}=\left(T+m c^{2}\right)^{2} \\
T=\sqrt{p^{2} c^{2}+m^{2} c^{4}}-m c^{2}
\end{array} \quad \begin{array}{l}
\text { The nonrelativistic } \\
\text { limit } p \ll m c
\end{array} \\
& T=m c^{2}\left[1+\frac{1}{2}\left(\frac{p}{m c}\right)^{2}-\frac{1}{8}\left(\frac{p}{m c}\right)^{4} \cdots-1\right]=\frac{p^{2}}{2 m}-\frac{p^{4}}{8 m^{3} c^{2}}+\cdots \\
& \hline
\end{aligned}
$$

$T=\frac{p^{2}}{2 m}-\frac{p^{4}}{8 m^{3} c^{2}}$

The classical result

The lowest-order relativistic contribution to the Hamiltonian

In first-order perturbation theory, the correction to E_{n} is given by the expectation value of H^{\prime} in the unperturbed state

$$
E_{\mathrm{r}}^{1}=-\frac{1}{8 m^{3} c^{2}}\left\langle\psi \mid \hat{p}^{4} \psi\right\rangle=-\frac{1}{8 m^{3} c^{2}}\left\langle\hat{p}^{2} \psi \mid \hat{p}^{2} \psi\right\rangle
$$

And, $\left(\frac{\hat{p}^{2}}{2 m}+V\right) \psi=E \psi \quad \hat{p}^{2} \psi=2 m(E-V) \psi$

$$
E_{\mathrm{r}}^{1}=-\frac{1}{2 m c^{2}}\left[E^{2}-2 E\langle V\rangle+\left\langle V^{2}\right\rangle\right]
$$

In the case of hydrogen

$$
\left.E_{\mathrm{r}}^{1}=-\frac{1}{2 m c^{2}}\left[E_{\mathrm{n}}^{2}+2 E_{n}\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right) / \frac{1}{r}\right\rangle+\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)^{2}\left\langle\frac{1}{r^{2}}\right\rangle\right]
$$

Where E_{n} is the Bohr energy of the state in question
And, $\left\langle\frac{1}{r}\right\rangle=\frac{1}{n^{2} a},\left\langle\frac{1}{r^{2}}\right\rangle=\frac{1}{(l+1 / 2) n^{3} a^{2}}$

$$
E_{\mathrm{r}}^{1}=-\frac{1}{2 m c^{2}}\left[E_{\mathrm{n}}^{2}+2 E_{n}\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right) \frac{1}{n^{2} a}+\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)^{2} \frac{1}{(l+1 / 2) n^{3} a^{2}}\right]
$$

IP1ugging

$$
E_{\mathrm{r}}^{1}=-\frac{1}{2 m c^{2}}\left[E_{\mathrm{n}}^{2}+2 E_{n}\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right) \frac{1}{n^{2} a}+\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)^{2} \frac{1}{(l+1 / 2) n^{3} a^{2}}\right]
$$

Spin-Orbit Coupling

Hydrogen atom, from the electron's perspective.

The orbiting positive charge sets up a magnetic field \mathbf{B} in the electron frame, which exerts a torque on the spinning electron, tending to align its magnetic moment ($\boldsymbol{\mu}$) along the direction of the field.

$$
H=-\boldsymbol{\mu} \cdot \mathbf{B}
$$

The Magnetic Field of the Proton

According to the Biot -Savart law : B $B=\frac{\mu_{0} I}{2 \mathrm{r}}$
An effective current $I=\frac{e}{T}=$ The charge of proton
The orbital angular momentum of the electron : $L=r m v=\frac{2 \pi m r^{2}}{T}$

Additional, \mathbf{B} and \mathbf{L} point in the same direction

$$
\mathrm{B}=\frac{1}{4 \pi \varepsilon_{0}} \frac{e}{m c^{2} r^{3}} \mathbf{L}
$$

The Magnetic Dipole Moment of the Electron

$$
\begin{gathered}
\text { Classical } \\
\text { electrodynamics } \\
\mu=\frac{q \pi r^{2}}{T} \\
S=\frac{2 \pi m r^{2}}{T} \\
\hline
\end{gathered}
$$

However, as it turns out, the electron's magnetic moment is twice the classical answer

$$
\boldsymbol{u}_{e}=-\frac{e}{m} \mathbf{S}
$$

The "extra" factor of 2 was explained by Dirac in his relativistic theory of the electron. For a related discussion, see V.Namias,Am.J.Phys.,57,171(1989).

$$
\mathrm{B}=\frac{1}{4 \pi \varepsilon_{0}} \frac{e}{m c^{2} r^{3}} \mathbf{L}
$$

The Spin-Obit Interaction

$$
\boldsymbol{\mu}_{e}=-\frac{e}{m} \mathbf{S}
$$

$$
H=\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right) \frac{1}{m^{2} c^{2} r^{3}} \mathbf{S} \cdot \mathbf{L}
$$

FR We did the analysis in the rest frame of A the electron, but that's not an inertial system-it accelerates as the electron orbits around the nucleus.

\mathbf{S}	\mathbf{O}	\mathbf{L}	\mathbf{U}	\mathbf{T}	\mathbf{I}	\mathbf{O}	\mathbf{N}

Make an appropriate kinematic correction, known as the Thomas precession.

The Spin-Obit Interaction

\(\left.\begin{array}{|c|}\hline The modified

gyromagnetic ratio

for the electron\end{array}\right\}\)| Exactly |
| :---: |
| cancel one |
| another |\(\left\{\begin{array}{c}the Thomas

precession

factor\end{array}\right.\)

D I S R E G A R D

Safely, on the basis of a naive classical model

$$
H_{S O}^{\prime}=\left(\frac{e^{2}}{8 \pi \varepsilon_{0}}\right) \frac{1}{m^{2} c^{2} r^{3}} \mathbf{S} \cdot \mathbf{L}
$$

$\left[H_{S O}^{\prime}, \mathbf{L}\right] \neq 0$ $\left[H_{S o}^{\prime}, \mathbf{S}\right] \neq 0$

The spin and orbital angular momenta are not conserved

Put it another way

The total angular momentum $\mathbf{J} \equiv \mathbf{L}+\mathbf{S}$

$$
\left[H_{S O}^{\prime}, \mathrm{L}^{2}\right]=0 \quad\left[H_{S O}^{\prime}, \mathrm{S}^{2}\right]=0
$$

$L^{2}, S^{2}, J^{2}, J_{z}$ are conserved, and the eigenstates of these quantities are good states to use in perturbation theory.

$\mathbf{J} \equiv \mathbf{L}+\mathbf{S} \quad J^{2}=L^{2}+S^{2}+2 \mathbf{L} \cdot \mathbf{S}$

\Rightarrow

$$
\mathbf{L} \cdot \mathbf{S}=\frac{1}{2}\left(J^{2}-L^{2}-S^{2}\right)
$$

Meanwhile,

The eigenvalue s of $\mathbf{L} \cdot \mathbf{S}$:
$\frac{\hbar^{2}}{2}[j(j+1)-l(l+1)-s(s+1)]$

$$
\begin{aligned}
& H_{S O}^{\prime}=\left(\frac{e^{2}}{8 \pi \varepsilon_{0}}\right) \frac{1}{m^{2} c^{2} r^{3}} \mathbf{S} \cdot \mathbf{L} \\
& \left\langle\frac{1}{r^{3}}\right\rangle=\frac{1}{l(l+1 / 2)(l+1) n^{3} a^{3}}
\end{aligned}
$$

$$
E_{S O}^{1}=\left(\frac{e^{2}}{8 \pi \varepsilon_{0}}\right) \frac{1}{m^{2} c^{2}} \frac{\hbar^{2} / 2[j(j+1)-l(l+1)-3 / 4]}{l(l+1 / 2)(l+1) n^{3} a^{3}}
$$

Express in terms of E_{n}

$$
E_{S O}^{1}=\frac{E_{n}^{2}}{m c^{2}}\left\{\frac{n[j(j+1)-l(l+1)-3 / 4}{l(l+1 / 2)}\right\}
$$

Fine structure

The relativistic correction
The spin-orbit coupling
$E_{\mathrm{r}}^{1}=-\frac{E_{\mathrm{n}}^{2}}{2 m c^{2}}\left[\frac{4 n}{l+1 / 2}-3\right]+E_{S O}^{1}=\frac{E_{n}^{2}}{m c^{2}}\left\{\frac{n[j(j+1)-l(l+1)-3 / 4]}{l(l+1 / 2)(l+1)}\right\}$

The correction to the Bohr formula

$$
E_{\mathrm{fs}}^{1}=\frac{E_{n}^{2}}{2 m c^{2}}\left(3-\frac{4 n}{j+1 / 2}\right)
$$

Combine with the Bohr formula

The complete finestructure formula

$$
E_{n j}=-\frac{13.6 e \mathrm{~V}}{n^{2}}\left[1+\frac{\alpha^{2}}{n^{2}}\left(\frac{n}{j+1 / 2}-\frac{3}{4}\right)\right]
$$

-Fine structure breaks the degeneracy in l
-The energies are determined by n and j

The Fine Structure of Hydrogen

Energy levels of hydrogen, including fine structure (not to scale)

The Zeeman Effect

- Weak-field zeeman effect
- Strong-field zeeman effect
- Intermediate-field zeeman effect

General discussion

Consider an atom placed in a uniform external magnetic field $\mathbf{B}_{\text {ext }}$

What

 \&
For a single electron

How

$$
H_{Z}^{\prime}=\frac{e}{2 m}(\mathbf{L}+2 \mathbf{S}) \cdot \mathrm{B}_{\mathrm{ext}}
$$

New phenomenon

The energy levels are shift when an atom is placed in a uniform external magnetic field

Depend on the strength of the external field in comparison with the internal field that gives rise to spin-orbit coupling

Weak-field Intermediate Strong-field

$\mathrm{B}_{\text {ext }} \ll \mathrm{B}_{\text {int }}$ Comparable $\mathrm{B}_{\text {ext }} \ll \mathrm{B}_{\text {int }}$

Weak-field Zeeman Effect

$$
\begin{aligned}
& {\left[H_{S O}^{\prime}, \mathbf{L}\right] \neq 0} \\
& {\left[H_{S O}^{\prime}, \mathbf{S}\right] \neq 0}
\end{aligned}
$$

The spin and orbital angular momenta are not conserved

Put it another way

The total angular momentum $\mathbf{J} \equiv \mathbf{L}+\mathbf{S}$

$$
\left[H_{S O}^{\prime}, \mathrm{L}^{2}\right]=0 \quad\left[H_{S O}^{\prime}, \mathrm{S}^{2}\right]=0
$$

$L^{2}, S^{2}, J^{2}, J_{z}$ are conserved, and the eigenstates of these quantities are good states to use in perturbation theory.

n, l, j and m_{j} are the " good" quantum numbers

The expectation

 value of \mathbf{S}In the presence of spin-orbit coupling, \mathbf{L} and \mathbf{S} are not separately conserved; they precess about the fixed total angular momentum, \mathbf{J}.

$$
\mathbf{S}_{\text {ave }}=\frac{(\mathbf{S} \cdot \mathbf{J})}{J^{2}} \mathbf{J}
$$

$\mathbf{L = \mathbf { J }} \mathbf{S} \cdot \mathbf{J}=\frac{1}{2}\left(J^{2}+S^{2}-L^{2}\right)=\frac{\hbar^{2}}{2}[j(j+1)+s(s+1)-l(l+1)]$
Meanwhile,

$$
\mathbf{S}_{\mathrm{ave}}=\frac{(\mathbf{S} \cdot \mathbf{J})}{J^{2}} \mathbf{J}
$$

$$
\begin{aligned}
& \langle\mathbf{L}+2 \mathbf{S}\rangle=\left\langle\left(1+\frac{(\mathbf{S} \cdot \mathbf{J})}{J^{2}} \mathbf{J}\right\rangle \quad \begin{array}{c}
\text { The } \\
=\left[1+\frac{j(j+1)-l(l+1)+3 / 4}{2 j(j+1)}\langle\langle\mathbf{J}\rangle\rangle\right. \\
\text { landé } \\
\text { g-factor, }
\end{array}\right.
\end{aligned}
$$

$$
\mathrm{g}_{\mathrm{J}}
$$

Choose the z -axis to lie along $\mathbf{B}_{\text {ext }}$

$$
E_{Z}^{1}=\mu_{B} g_{J} B_{e x t} m_{j}
$$

Bohr magneton

Where, $\mu_{B} \equiv \frac{e \hbar}{2 m}=5.788 \times 10^{-5} \mathrm{eV} / \mathrm{T}$

Strong-field Zeeman Effect

From csep10.phys.utk.edu/.../light/zeeman-split.html

Strong-field Zeeman Effect

The splitting of spectrum

$\mathrm{B}_{\mathrm{ext}} \gg \mathrm{B}_{\text {int }}$

The zeeman effect dominates

Fine structure as the perturbation

Strong-field Zeeman Effect

n, l, m_{l} and m_{s} are now the "good" quantum numbers

Choose the z-axis to lie along $\mathbf{B}_{\text {ext }}$

The zeeman Hamiltonian

$$
H_{Z}^{\prime}=\frac{e}{2 m} B_{e x t}\left(L_{z}+2 S_{z}\right)
$$

$$
E_{n m_{l} m_{s}}=-\frac{13.6 e V}{n^{2}}+\mu_{B} B_{e x t}\left(m_{l}+2 m_{s}\right)
$$

The fine structure correction:

$$
E_{f s}^{1}=\left\langle n l m_{l} m_{s}\right| H_{r}^{\prime}+H_{s o}^{\prime}\left|n l m_{l} m_{s}\right\rangle
$$

$\mathrm{H}_{\mathrm{r}}^{\prime}$: The same as before $\langle\mathbf{S} \cdot \mathbf{J}\rangle=\left\langle S_{x}\right\rangle\left\langle L_{x}\right\rangle+\left\langle S_{y}\right\rangle\left\langle L_{y}\right\rangle+\left\langle S_{z}\right\rangle\left\langle L_{z}\right\rangle=\hbar^{2} m_{l} m_{s}$

$$
E_{f s}^{1}=\frac{13.6 \mathrm{eV}}{n^{3}} \alpha^{2}\left\{\frac{3}{4 n}-\left[\frac{l(l+1)-m_{l} m_{s}}{l(l+1 / 2)(l+1)}\right]\right\}<\begin{gathered}
\text { What } \\
\text { if } l=\mathbf{0} ?
\end{gathered}
$$

Intermediate-field Zeeman Effect

Neither $\mathrm{H}_{\mathrm{Z}}^{\prime}$ nor $\mathrm{H}_{\mathrm{fs}}^{\prime}$ dominates

Treat them on an equal footing

As perturbation to Bohr
Hamiltonian

$H^{\prime}=H_{Z}^{\prime}+H_{\mathrm{fs}}^{\prime}$

Intermediate-field Zeeman Effect

The case $: n=2$; The basis : the states characteri zed by l, j, and m_{j}

My

Using the Clebsch-
Gordan coefficients

$$
l=0\left\{\begin{array}{l}
\Psi_{1} \equiv\left|\frac{1}{2} \frac{1}{2}\right\rangle=\left\lvert\, \begin{array}{lll}
0 & 0\rangle\left|\frac{1}{2} \frac{1}{2}\right\rangle, \\
\left.\Psi_{2} \equiv\left|\frac{1}{2} \frac{-1}{2}\right\rangle=\left|\begin{array}{ll}
0 & 0
\end{array}\right\rangle \frac{1}{2} \frac{-1}{2}\right\rangle,
\end{array}\right., .
\end{array}\right.
$$

$$
l=1\left\{\begin{array}{l}
\Psi_{3} \equiv\left|\frac{3}{2} \frac{3}{2}\right\rangle=|11\rangle\left|\frac{1}{2} \frac{1}{2}\right\rangle, \\
\Psi_{4} \equiv\left|\frac{3}{2} \frac{-3}{2}\right\rangle=|1-1\rangle\left|\frac{1}{2} \frac{-1}{2}\right\rangle, \\
\Psi_{5} \equiv\left|\frac{3}{2} \frac{1}{2}\right\rangle=\sqrt{2 / 3}|10\rangle\left|\frac{1}{2} \frac{1}{2}\right\rangle+\sqrt{1 / 3}|11\rangle\left|\frac{1}{2} \frac{-1}{2}\right\rangle, \\
\Psi_{6} \equiv\left|\frac{1}{2} \frac{1}{2}\right\rangle=-\sqrt{1 / 3}|10\rangle\left|\frac{1}{2} \frac{1}{2}\right\rangle+\sqrt{2 / 3}|11\rangle\left|\frac{1}{2} \frac{-1}{2}\right\rangle, \\
\Psi_{7} \equiv\left|\frac{3}{2} \frac{-1}{2}\right\rangle=\sqrt{1 / 3}|1-1\rangle\left|\frac{1}{2} \frac{1}{2}\right\rangle+\sqrt{2 / 3}|10\rangle\left|\frac{1}{2} \frac{-1}{2}\right\rangle, \\
\Psi_{8} \equiv\left|\frac{1}{2} \frac{-1}{2}\right\rangle=-\sqrt{2 / 3}|1-1\rangle\left|\frac{1}{2} \frac{1}{2}\right\rangle+\sqrt{1 / 3}|10\rangle\left|\frac{1}{2} \frac{-1}{2}\right\rangle .
\end{array}\right.
$$

Matrix of H^{\prime}

$\left(\begin{array}{cccccccc}5 \gamma-\beta & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 5 \gamma+\beta & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \gamma-2 \beta & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \gamma-2 \beta & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \gamma-\frac{2}{3} \beta & \frac{\sqrt{2}}{3} \beta & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{3} \beta & 5 \gamma-\frac{1}{3} \beta & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \gamma+\frac{2}{3} \beta & \frac{\sqrt{2}}{3} \beta \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{3} \beta & 5 \gamma+\frac{1}{3} \beta\end{array}\right)$

Where $\quad \gamma \equiv(\alpha / 8)^{2} 13.6 \mathrm{eV}$ and $\beta \equiv \mu_{\mathrm{B}} B_{\text {ext }}$.

Energy levels for the $\mathbf{n}=\mathbf{2}$ states of hydrogen, with fine structure and zeeman splitting

$$
\begin{aligned}
& \varepsilon_{1}=E_{2}-5 \gamma+\beta \\
& \varepsilon_{2}=E_{2}-5 \gamma-\beta \\
& \varepsilon_{3}=E_{2}-\gamma+2 \beta \\
& \varepsilon_{4}=E_{2}-\gamma-2 \beta \\
& \varepsilon_{5}=E_{2}-3 \gamma+\beta / 2+\sqrt{4 \gamma^{2}+(2 / 3) \gamma \beta+\beta^{2} / 4} \\
& \varepsilon_{6}=E_{2}-3 \gamma+\beta / 2-\sqrt{4 \gamma^{2}+(2 / 3) \gamma \beta+\beta^{2} / 4} \\
& \varepsilon_{7}=E_{2}-3 \gamma-\beta / 2+\sqrt{4 \gamma^{2}-(2 / 3) \gamma \beta+\beta^{2} / 4} \\
& \varepsilon_{8}=E_{2}-3 \gamma-\beta / 2-\sqrt{4 \gamma^{2}-(2 / 3) \gamma \beta+\beta^{2} / 4}
\end{aligned}
$$

Hyperfine splitting

Brief introduction to proton

Made by Arpad Horvath. commons.wikimedia.org/wiki/ Image:Quark struct...

The quark structure of the proton. There are two up quark in it and one down quark. The strong force is mediated by gluons (wavey). The strong force has three types of charges, the so called red, green and the blue. cut is a douche bagg

magnetic

Brief introduction to proton

The profon itself constitutes a magnetic dipole, smaller than the electron's

$$
\mu_{p}=\frac{g e}{2 m_{p}} \mathbf{S}_{p} ; g=5.59(\text { measured value })
$$

According to classical electrodynamics, a dipole μ sets up a magnetic field.

$$
\mathrm{B}=\frac{\mu_{0}}{4 \pi r^{3}}[3(\mu \cdot \mathrm{r}) \mathrm{r}-\mu]+\frac{2 \mu_{0}}{3} \mu \delta^{3}(\mathrm{r})
$$

For a related discussion, see D.J.Griffiths,Am.J.Phys.,50,698(1982).

The electron near proton

The Hamiltonian of the electron, due to the proton's magnetic dipole moment

$$
H=-\mu \cdot B
$$

$$
H_{h f}^{\prime}=\frac{\mu_{0} g e^{2}}{8 \pi m_{p} m_{e}} \frac{\left.3\left(\mathbf{S}_{p} \cdot \mathbf{r}\right)\left(\mathbf{S}_{e} \cdot \mathbf{r}\right)-\mathbf{S}_{p} \cdot \mathbf{S}_{e}\right]}{r^{3}}+\frac{\mu_{0} g e^{2}}{3 m_{p} m_{e}} \mathbf{S}_{p} \cdot \mathbf{S}_{e} \delta^{3}(\mathrm{r})
$$

According to perturbation theory, we can get the first-order correction to the energy

$$
E_{h f}^{1}=\frac{\mu_{0} g e^{2}}{8 \pi m_{p} m_{e}}\left\langle\frac{3\left(\mathbf{S}_{p} \cdot \mathbf{r}\right)\left(\mathbf{S}_{e} \cdot \mathbf{r}\right)-\mathbf{S}_{p} \cdot \mathbf{S}_{e}}{r^{3}}\right\rangle+\left.\frac{\mu_{0} g e^{2}}{3 m_{p} m_{e}}\left\langle\mathbf{S}_{p} \cdot \mathbf{S}_{e}\right\rangle \psi(0)\right|^{2}
$$

For the ground state hydrogen

The wave function is spherically symmetrical

$$
\left\langle\frac{3\left(\mathbf{S}_{p} \cdot \mathbf{r}\right)\left(\mathbf{S}_{e} \cdot \mathbf{r}\right)-\mathbf{S}_{p} \cdot \mathbf{S}_{e}}{r^{3}}\right\rangle=0
$$

Spin-spin coupling

The individual spin angular momenta are no longer conserved; the "good" states are eigenvectors of the total spin.

$$
\mathbf{S} \equiv \mathbf{S}_{e}+\mathbf{S}_{p} \rightarrow \mathbf{S}_{p} \cdot \mathbf{S}_{e}=\frac{1}{2}\left(S^{2}-S_{e}^{2}-S_{p}^{2}\right)
$$

> The electron and proton both have spin $1 / 2$.

$$
S_{e}^{2}=S_{p}^{2}=(3 / 4) \hbar^{2}
$$

In the	triplet	state,	$S^{2}=2 \hbar^{2}$
In the	singlet	state,	$S^{2}=0$.

$$
E_{h f}^{1}=\frac{4 g \hbar^{2}}{3 m_{p} m_{e}^{2} c^{2} a^{4}}\left\{\begin{array}{l}
+1 / 4, \text { (triplet }) \\
-3 / 4, \text { (singlet })
\end{array}\right.
$$

Effect of spin-spin coupling

Hyperfine splitting in the ground state of hydrogen
-Lifting the triplet configuration
-Depressing the singlet configuration

The energy gap as a result of spin-spin coupling

$$
\Delta E=\frac{4 g \hbar^{2}}{3 m_{p} m_{e}^{2} c^{2} a^{4}}=5.88 \times 10^{-6} \mathrm{eV}
$$

The frequency of the photon emitted in a transition from the triplet to the singlet state

$$
v=\frac{\Delta E}{h}=1420 \mathrm{MHz}
$$

Corresponding wavelength : $\mathrm{c} / v=21 \mathrm{~cm}$
 Fall in the microwave region
 This famous "21-centimeter line" is among the most pervasive and ubiquitous forms of radiation in the universe.
 21centimeter line

