
R.RosnawatiR.Rosnawati



 Any straight line in xy-plane can be
represented algebraically by an equation
of the form: ax + by = c

 General form: define a linear equation in
the n variables                   :

◦ Where                        and b are real constants.
◦ The variables in a linear equation are sometimes

called unknowns.
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 The equations                                      and
are linear.

 Observe that a linear equation does not involve any
products or roots of variables. All variables occur
only to the first power and do not appear as
arguments for trigonometric, logarithmic, or
exponential functions.

 The equations sin x +cos x = 1, log x = 2
are not linear.

,13
2

1
,73  zxyyx

732 4321  xxxx
 The equations                                      and

are linear.
 Observe that a linear equation does not involve any

products or roots of variables. All variables occur
only to the first power and do not appear as
arguments for trigonometric, logarithmic, or
exponential functions.

 The equations sin x +cos x = 1, log x = 2
are not linear.



 Find the solution of

 Solution(a)
we can assign an arbitrary value to x and solve

for y , or choose an arbitrary value for y and solve
for x .If we follow the first approach and assign x
an arbitrary value ,we obtain

◦ arbitrary numbers          are called parameter.
◦ for example
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◦ A solution of a linear equation is a sequence of n numbers
s1, s2, ..., sn such that the equation is satisfied. The set of
all solutions of the equation is called its solution set or
general solution of the equation
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 Find the solution of

 Solution(b)
we can assign arbitrary values to any two

variables and solve for the third variable.
◦ for example

◦ where s, t are arbitrary values
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 A finite set of linear equations
in the variables
is called a system of linear

equations or a linear system .

 A sequence of numbers
is called a

solution of the system.

 A system has no solution is
said to be inconsistent ; if
there is at least one solution
of the system, it is called
consistent.
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An  arbitrary system of m
linear equations in n unknowns



 Every system of linear equations has
either no solutions, exactly one
solution, or infinitely many solutions.

 A general system of two linear
equations: (Figure1.1.1)

◦ Two lines may be parallel -> no
solution

◦ Two lines may intersect at only one point
-> one solution

◦ Two lines may coincide
-> infinitely many solution
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equations: (Figure1.1.1)

◦ Two lines may be parallel -> no
solution

◦ Two lines may intersect at only one point
-> one solution

◦ Two lines may coincide
-> infinitely many solution
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 The location of the +’s,
the x’s, and the =‘s can
be abbreviated by writing
only the rectangular array
of numbers.

 This is called the
augmented matrix for the
system.

 Note: must be written in
the same order in each
equation as the unknowns
and the constants must be
on the right.
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 The basic method for solving a system of linear equations
is to replace the given system by a new system that has
the same solution set but which is easier to solve.

 Since the rows of an augmented matrix correspond to the
equations in the associated system. new systems is
generally obtained in a series of steps by applying the
following three types of operations to eliminate unknowns
systematically. These are called elementary row
operations.
1. Multiply an equation through by an nonzero constant.
2. Interchange two equation.
3. Add a multiple of one equation to another.
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 The solution x=1,y=2,z=3 is now evident.


