Systems of Linear Equations R.Rosnawati

Linear Equations

- Any straight line in xy-plane can be represented algebraically by an equation of the form: $a x+b y=c$
- General form: define a linear equation in the n variables $x_{1}, x_{2}, \ldots, x_{n}$:

$$
a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=b
$$

- Where $a_{1}, a_{2}, \ldots, a_{n}$, and b are real constants.

The variables in an linear equation are sometimes called unknowns.

Example 1

Linear Equations

- Observe that a linear equation does not involve any products or roots of variables. All variables occur only to the first power and do not appear as arguments for trigonometric, logarithmire,$y_{r}=5$ exponential functions.
- The equations $\sin x+\cos x=1, \log x=2$ are not linear.

Example 2 Finding a Solution Set

- Find the solution of (a) $4 x-2 y=1$
- Solution(a)
we can assign an arbitrary value to x and solve for y, or choose an arbitrary value for y and solve for x. If we follow the first approach and assign x an arbitrary value , we obtain

$$
x=t_{1}, y=2 t_{1}-\frac{1}{2} \quad \text { or } \quad x=\frac{1}{2} t_{2}+\frac{1}{4}, y=t_{2}
$$

${ }^{\circ}$ arbitrary numbers t_{1}, t_{2} are called parameter.

- for example

$$
t_{1}=3 \text { yields the solution } x=3, y=\frac{11}{2} \quad \text { as } \quad t_{2}=\frac{11}{2}
$$

Solution

- A solution of a linear equation is a sequence of n numbers $s_{l}, s_{2}, \ldots, s_{n}$ such that the equation is satisfied. The set of all solutions of the equation is called its solution set or general solution of the equation

Example Finding a Solution Set

- Find the solution ofb) $x_{1}-4 x_{2}+7 x_{3}=5$.
- Solution(b)
we can assign arbitrary values to any two variables and solve for the third variable.
- for example
$x_{1}=5+4 s-7 t, \quad x_{2}=s, \quad x_{3}=t$
\bullet where s, t are arbitrary values

Linear Systems

- A finite set of linear equations in the variable $\mathrm{S}_{1}, x_{2}, \ldots, x_{n}$ $a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1}$
$a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2}$
- A sequence of numbers M M M M is called a sod $1, s_{2}, \ldots, n$, sof the system.
$a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m}$
- A system has no solution is said to be inconsistent; if there is at least one solution linear equations in n unknowns of the system, it is called consistent.

Linear Systems

- Every system of linear equations has either no solutions, exactly one solution, or infinitely many solutions.
- A general system of two linear equations: (Figurel.1.1)

$$
a_{1} x+b_{1} y=c_{1}\left(a_{1}, b_{1}\right. \text { not both zero) }
$$

Two lins $a_{2} x+b_{2} y=c_{2}$ ($a_{2} b_{2}$ not both zero)

- Two lines may be parallel ${ }^{2}->$ no solution
- Two lines may intersect at only one point -> one solution
- Two Tines may coincide -> infinitely many solution

(a) No solution

(b) One solution

(c) Infinitely many solutions

Figure 1.1.1

Augmented Matrices

- The location of the +'s, the x 's, and the = 's can be abbreviated by writing only the rectangular array of numbers.

$$
\begin{array}{rl}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} & =b_{2} \\
\mathrm{M} \quad \mathrm{M} \quad \mathrm{M} & \mathrm{M} \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} & =b_{m}
\end{array}
$$

- This is called the augmented matrix for the system.
- Note: must be written in the same order in each equation as the unknowns and the constants must be on the right.

Elementary Row Operations

- The basic method for solving a system of linear equations is to replace the given system by a new system that has the same solution set but which is easier to solve.
- Since the rows of an augmented matrix correspond to the equations in the associated system. new systems is generally obtained in a series of steps by applying the following three types of operations to eliminate unknowns systematically. These are called elementary row
operations.

1. Multiply an equation through by an nonzero constant.
2. Interchange two equation.
3. Add a multiple of one equation to another.

Example 3 Using Elementary row Operations

$x+y+2 z=9$	addd $22^{2} \mathrm{tu}$ Mes
$2 x+4 y-3 z=1$	

Example 3 Using Elementary row Operations

$$
\begin{aligned}
& x+y+2 z=9 \quad \text { multipty } y_{y}^{2} \text { athe second } \\
& 2 y-7 z=-17 \quad \text { equation }{ }^{2} \text { by } \frac{7}{2} \\
& 3 y-11 z=-27
\end{aligned}
$$

Example 3 Using Elementary row Operations

$$
\begin{aligned}
x+y+2 z & =9 \\
y-\frac{7}{2} z & =-\frac{17}{2} \\
-\frac{1}{2} z & =-\frac{3}{2}
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
1 & 1 & 2 & 9 \\
0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\
0 & 0 & -\frac{1}{2} & -\frac{3}{2}
\end{array}\right] \xrightarrow{\begin{array}{l}
\text { Multily the third } \\
\text { row by }-2
\end{array}}\left[\begin{array}{cccc}
1 & 1 & 2 & 9 \\
0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\
0 & 0 & 1 & 3
\end{array}\right] \xrightarrow{\begin{array}{l}
\text { Add }-1 \text { times the } \\
\text { second row } \\
\text { to the first }
\end{array}}
$$

Example 3 Using Elementary row Operations

$$
x \quad \begin{aligned}
+\frac{11}{2} z & =\frac{35}{2} \\
y-\frac{7}{2} z & =-\frac{17}{2} \\
z & =3
\end{aligned} \begin{aligned}
& \begin{array}{l}
\text { Add }-\frac{11}{2} \text { times } \\
\text { the third equation } \\
\text { to the first and } \frac{7}{2} \text { tio } \\
\text { the third equation } \\
\text { to phe second }
\end{array}
\end{aligned}
$$

Add $-\frac{11}{2}$ times

$$
\left[\begin{array}{cccc}
1 & 0 & \frac{11}{2} & \frac{35}{2} \\
0 & 1 & -\frac{7}{2} & -\frac{17}{2} \\
0 & 0 & 1 & 3
\end{array}\right] \xrightarrow{\begin{array}{l}
\text { the third row } \\
\text { to the first and } \frac{7}{2} \\
\text { times the third row } \\
\text { to the second }
\end{array}}\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

The solution $x=1, y=2, z=3$ is now evident.

