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1  Inner Products1  Inner Products



2. Algebraic Properties of Inner Products2. Algebraic Properties of Inner Products



θθ: the angle between u and v: the angle between u and v



3  Gram3  Gram--Schmidt Process;  QRSchmidt Process;  QR--
DecompositionDecomposition



QRQR--DecompositionDecomposition



4. Best Approximation; Least4. Best Approximation; Least
SquaresSquares
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5  Least Squares Fitting to Data5  Least Squares Fitting to Data



The Least Squares SolutionThe Least Squares Solution
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Fourier Approximation to y = xFourier Approximation to y = x
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1 Orthogonal Matrices1 Orthogonal Matrices





Orthonormal BasisOrthonormal Basis



Orthogonal DiagonalizationOrthogonal Diagonalization



Symmetric MatricesSymmetric Matrices



Schur’s TheoremSchur’s Theorem



Hessenberg’s TheoremHessenberg’s Theorem



3 Quadratic Forms3 Quadratic Forms
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Central conics in standardCentral conics in standard
positionposition



Definite quadratic formsDefinite quadratic forms



Ellipse? Hyperbola? Neither?Ellipse? Hyperbola? Neither?
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Hessian Form of theHessian Form of the
second derivative testsecond derivative test



5  Hermitian, Unita and Normal5  Hermitian, Unita and Normal
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Unitarily DiagonalizingUnitarily Diagonalizing
a Hermitian Matrixa Hermitian Matrix
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General Linear TransformationsGeneral Linear Transformations



Dilation and ContractionDilation and Contraction
OperatorsOperators



Image, Kernel and RangeImage, Kernel and Range



Rank, Nullity and DimensionRank, Nullity and Dimension
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Compositions and InverseCompositions and Inverse
TransformationsTransformations



InversesInverses



Matrices for GeneralMatrices for General
Linear TransformationsLinear Transformations



Matrix of CompositionsMatrix of Compositions
and Inverse Transformationsand Inverse Transformations



SimilaritySimilarity



Eigenvalues and EigenvectorsEigenvalues and Eigenvectors
Definition 1: A nonzero vector x is an eigenvector (or characteristic vector)
of a square matrix A if there exists a scalar λ such that Ax = λx. Then λ is an
eigenvalue (or characteristic value) of A.

Note: The zero vector can not be an eigenvector even though A0 = λ0. But λ
= 0 can be an eigenvalue.

Example: The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.



Geometric interpretation ofGeometric interpretation of
Eigenvalues and EigenvectorsEigenvalues and Eigenvectors

An n×n matrix A multiplied by n×1 vector x results in another
n×1 vector y=Ax. Thus A can be considered as a
transformation matrix.

In general, a matrix acts on a vector by changing both its
magnitude and its direction. However, a matrix may act on
certain vectors by changing only their magnitude, and leaving
their direction unchanged (or possibly reversing it). These
vectors are the eigenvectors of the matrix.

A matrix acts on an eigenvector by multiplying its magnitude by
a factor, which is positive if its direction is unchanged and
negative if its direction is reversed. This factor is the eigenvalue
associated with that eigenvector.
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6.2 Eigenvalues6.2 Eigenvalues
Let x be an eigenvector of the matrix A. Then there must exist an
eigenvalue λ such that Ax = λx or, equivalently,

Ax - λx = 0 or

(A – λI)x = 0

If we define a new matrix B = A – λI, then

Bx = 0

If B has an inverse then x = B-10 = 0. But an eigenvector cannot
be zero.

Thus, it follows that x will be an eigenvector of A if and only if B
does not have an inverse, or equivalently det(B)=0, or

det(A – λI) = 0

This is called the characteristic equation of A. Its roots
determine the eigenvalues of A.
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Example 1: Find the eigenvalues of

two eigenvalues: 1,  2
Note: The roots of the characteristic equation can be repeated. That is, λ1 = λ2

=…= λk. If that happens, the eigenvalue is said to be of multiplicity k.
Example 2: Find the eigenvalues of

λ = 2 is an eigenvector of multiplicity 3.
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6.2 Eigenvalues: examples6.2 Eigenvalues: examples
Example 1: Find the eigenvalues of

two eigenvalues: 1,  2
Note: The roots of the characteristic equation can be repeated. That is, λ1 = λ2

=…= λk. If that happens, the eigenvalue is said to be of multiplicity k.
Example 2: Find the eigenvalues of

λ = 2 is an eigenvector of multiplicity 3.
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Example 1 (cont.):
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6.3 Eigenvectors6.3 Eigenvectors
To each distinct eigenvalue of a matrix A there will correspond at least one
eigenvector which can be found by solving the appropriate set of homogenous
equations. If λi is an eigenvalue then the corresponding eigenvector xi is the
solution of (A – λiI)xi = 0
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Example 2 (cont.): Find the eigenvectors of

Recall that λ = 2 is an eigenvector of multiplicity 3.
Solve the homogeneous linear system represented by

Let                      . The eigenvectors of  = 2 are of the
form

s and t not both zero.
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6.3 Eigenvectors6.3 Eigenvectors


















200

020

012

AExample 2 (cont.): Find the eigenvectors of

Recall that λ = 2 is an eigenvector of multiplicity 3.
Solve the homogeneous linear system represented by

Let                      . The eigenvectors of  = 2 are of the
form

s and t not both zero.















































 


0

0

0

000

000

010

)2(

3

2

1

x

x

x

AI x

txsx  31 ,

,

1

0

0

0

0

1

0

3

2

1
































































 ts

t

s

x

x

x

x



6.4 Properties of Eigenvalues and Eigenvectors6.4 Properties of Eigenvalues and Eigenvectors
Definition: The trace of a matrix A, designated by tr(A), is the sum
of the elements on the main diagonal.

Property 1: The sum of the eigenvalues of a matrix equals the
trace of the matrix.

Property 2: A matrix is singular if and only if it has a zero
eigenvalue.

Property 3: The eigenvalues of an upper (or lower) triangular
matrix are the elements on the main diagonal.

Property 4: If λ is an eigenvalue of A and A is invertible, then 1/λ
is an eigenvalue of matrix A-1.
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6.4 Properties of Eigenvalues and6.4 Properties of Eigenvalues and
EigenvectorsEigenvectors

Property 5: If λ is an eigenvalue of A then kλ is an eigenvalue of
kA where k is any arbitrary scalar.

Property 6: If λ is an eigenvalue of A then λk is an eigenvalue of
Ak for any positive integer k.

Property 8: If λ is an eigenvalue of A then λ is an eigenvalue of AT.

Property 9: The product of the eigenvalues (counting multiplicity)
of a matrix equals the determinant of the matrix.

Property 5: If λ is an eigenvalue of A then kλ is an eigenvalue of
kA where k is any arbitrary scalar.

Property 6: If λ is an eigenvalue of A then λk is an eigenvalue of
Ak for any positive integer k.

Property 8: If λ is an eigenvalue of A then λ is an eigenvalue of AT.

Property 9: The product of the eigenvalues (counting multiplicity)
of a matrix equals the determinant of the matrix.



6.5 Linearly independent eigenvectors6.5 Linearly independent eigenvectors
Theorem: Eigenvectors corresponding to distinct (that is, different)
eigenvalues are linearly independent.

Theorem: If λ is an eigenvalue of multiplicity k of an n  n matrix
A then the number of linearly independent eigenvectors of A
associated with λ is given by m = n - r(A- λI). Furthermore, 1 ≤ m
≤ k.

Example 2 (cont.): The eigenvectors of  = 2 are of the form

s and t not both zero.

 = 2 has two linearly independent eigenvectors
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≤ k.

Example 2 (cont.): The eigenvectors of  = 2 are of the form
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