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1 Inner Products

DEFINITION1 Aninnerproduct on areal vector space V is a function that associates
a real number (u, v) with each pair of vectors in V in such a way that the following
axioms are satisfied for all vectors u, v, and w in V and all scalars k.

. (n,v)={v.n) |Symmetry axiom]

2. (u+v.w) = {u,w)+ (v,w) [Additivity axiom]

3. {ka v} —=k{u; ) [Homogeneity axiom]

4, (v,v) =0and (v,v) =0ifand only if v =0 [Positivity axiom]

A real vector space with an inner product is called a real inner product space.

(W, vl =u-v=ujv + v + -+ U,v,



2. Algebraic Properties of Inner Products

THEOREM 6.1.2 Ifu, v, and w are vectors in a real inner product space V, and if k
is a scalar, then:

@ (0,v)=(v,0)=0

(b) (u,v+w)=(u,v)+ (u w)
(c) (u,v—w)={(u,v)— (uw)
(d) (u—v,w) = (u,w)— (v, w)

(e) k{u,v) = (u, kv)



0: the angle between u and v

1 (u,v)
9 _ |
. (nunuvu)

DEFINITION 1 Two vectors u and v in an inner product space are called orthogonal
it vy =0,




3 Gram-Schmidt Process; QR-
Decomposition

The Gram—-Schmidt Process

To convert a basis {u;, u,, ..., u,} into an orthogonal basis {v, v, ..., V,}, perform
the following computations:

Sl‘ep U

(w2, vy)
Sft—’p 2. Va = Uy — 7\"1

vl

(u3, vi) (u3, v2)
Sfe’p 3. vVi=u3 — s V] — Jr* 5 Vo

INAY |2l

U4, Vy Uy, V2 U4, V3
Sff.fp 4. Vg4 =14 — { - 2}V1 = ( , 2}\-'2 e ( - ,)}"3

, INAY vl INEY

(continue for r steps)

Optional Step. To convert the orthogonal basis into an orthonormal basis
{41, 92, - - -, q,-}. normalize the orthogonal basis vectors.



QR-Decomposition

THEOREM 6.3.7 QR-Decomposition

If A is an m x n matrix with linearly independent column vectors, then A can be
factored as

A= OR

where Q is an m X n matrix with orthonormal column vectors, and R is an n X n
invertible upper triangular matrix.



4. Best Approximation; Least
Squares

Least Squares Problem Given a linear system Ax = b of m equations in n un-
knowns, find a vector x that minimizes ||b — Ax|| with respect to the Euclidean inner
product on R™. We call such an x a least squares solution of the system, we call
b — AXx the least squares error vector, and we call |b — Ax|| the least squares error.

THEOREM 6.4.1 Best Approximation Theorem

If W is a finite-dimensional subspace of an inner product space V., and if b is
a vector in V, then projy b is the best approximation to b from W in the sense
that

b —projy, bl < |lb — wi

for every vector w in W that is different from projy b.



Least squares solutions to Ax =
b

THEOREM 6.4.2 For every linear system AX = b, the associated normal system
A'Ax = A"b )

is consistent, and all solutions of (3) are least squares solutions of AX = b. Moreover,
if W is the column space of A, and X is any least squares solution of AX = b, then
the orthogonal projection of b on W is

projy b = Ax (6)



THEOREM 6.4.6 Equivalent Statements

If A is an n x n matrix, then the following statements are equivalent.
(@) A is invertible.

(b)  Ax = 0 has only the irivial solution.

(c) The reduced row echelon form of A is I,,.

(d) A is expressible as a product of elementary matirices.

() Ax = b is consistent for every n x 1 matrix b.

() Ax = b has exactly one solution for every n x | matrix b.
(g) det(A) #0.

(h) The column vectors of A are linearly independent.

() The row vectors of A are linearly independent.

(/) The column vectors of A span R".

(k) The row vectors of A span R".

(1) The column vectors of A form a basis for R".

(m) The row vectors of A form a basis for R".

(n) A has rank n.

(o) A has nullity 0.

(p) The arthogonal complement of the null space of A is R".
(g) The orthogonal complement of the row space of A is [0}
() The range of T4 is R".

(5) Ta is one-fo-one.

() & =0 isnot an eigenvalue of A.

(u) ATA is invertible.



5 Least Squares Fitting to Data

(a) y=a+bx

x
o

(b) y=a+ bx + cx?

F

-

() y=a+ bx + cx? + dx°



The Least Squares Solution

THEOREM 6.5.1 Uniqueness of the Least Squares Solution

Let (x, 1), (x2, ¥2), - - ., (X, ¥,,) be a set of two or more data points, not all lving
on a vertical line, and let

-1 = =

X1 Vi
1 x 2
M= and y=|",
e B

Then there is a unique least squares straight line fit

y=a"+b*x
to the data points. Moreover,
* a”
=
is given by the formula
v = MM)"'MTy (6)

which expresses the fact that v = v* is the unique solution of the normal equations

M™Mv = MTy (7)



6 Function Approximation;
Fourier Series

THEOREM6.6.1 [If fis a continuous functionon [a, b], and W is a finite-dimensional
subspace of Cla, b], then the function g in W that minimizes the mean square error

b
f [f(x) — g(x)]* dx

is ¢ = projw f, where the orthogonal projection is relative to the inner product

b
£, g) = f FCea)dx

The function g = projy f is called the least squares approximation to f from W.



Fourier Coefficients & Series

A function of the form
T(x)=cy+cicosx +crc082x + -+ + ¢, COSnX ?)
+dysinx +d,sin2x +---+d, sinnx

s called a trigonometric polynomial; if ¢, and d,, are not both zero, then T (x) is said to
have order n. For example,

T(x)=24+cosx —3cos2x + 7sindx
1s a trigonometric polynomial of order 4 with

gi=2, gi=l, =3, g=b =0, d=l =0 dB=0, di=1

a
projw f = jﬂ + lajcosx +---+a,cosnx|+ [brsinx 4+ ---+ b, sinnx]



1 2 1 2w
a, = — f(x)coskxdx, b= — f(x)sinkxdx
T Jo T Jo
The numbers ag, ay, ..., ay, by, ..., b, are called the Fourier coefficients ot {.

f(x) =

ay = :
— + a, coskx 4 b, sinkx
> ;( k k )



Fourier Approximation to y = x

) sin 2x sin 3x Sin nx
x~m—2{sinx + +

g e

The graphs of y = x and some of these approximations are shown in Figure 6.6.4.
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1 Orthogonal Matrices

DEFINITION 1 A square matrix A is said to be erthogonal 1f its transpose is the same
as its inverse, that is, if
A=At

or, equivalently, if |
AAT = ATA = (1)

THEOREM 71.1 The following are equivalent for an n x n matrix 4.

(a) A is orthogonal.
(b) The row veciors of A form an orthonormal set in R" with the Euclidean inner

product.
(c) The column vectors of A form an orthonormal set in R" with the Euclidean inner

product.




THEOREM 7.1.2
(a) The inverse of an orthogonal matrix is orthogonal.

(b) A product of orthogonal matrices is orthogonal.
(¢) [If A is orthogonal, then det(A) = 1 or det(A) = —1.

THEOREM 71.3 [If A is an n X n matrix, then the following are equivalent.
(a) A is orthogonal.

(b) ||AX]|| = ||x]| for all X in R".

(¢c) AX-Ay=Xx-.yforallxandyinR".



Orthonormal Basis

THEOREM 71.4 If S is an orthonormal basis for an n-dimensional inner product
space V, and if

(W)s = (1, U2, -0 ltn) and (V)s = (01,02, ..., U)
then:
(@) lull = Jui+uz+--- +u
(b) d(u,v) = /(ug —v)2+ (us — v2)2 + -+ + (u, — v,)?

(c) (w,v)=uwuvy +uzv2+---+uyuv,

THEOREM 71.5 Let V be a finite-dimensional inner product space. If P is the
transition matrix from one orthonormal basis for V to another orthonormal basis for
V, then P is an orthogonal matrix.



Orthogonal Diagonalization

DEFINITION 1 If A and B are square matrices, then we say that A and B are orthog-
onally similar if there is an orthogonal matrix P such that P’/AP = B.

[f A is orthogonally similar to some diagonal matrix, say
P'AP=D

then we say that A is erthogonally diagonalizable and that P erthogonally diagonal-
izes A.

THEOREM 7.2.1 [If A is an n X n matrix, then the following are equivalent.
(a) A is orthogonally diagonalizable.
(b) A has an orthonormal set of n eigenvectors.

(¢) A is symmelric.



Symmetric Matrices

THEOREM 7.2.2 If A is a symmetric matrix, then:
(a) The eigenvalues of A are all real numbers.

(b) Eigenvectors from different eigenspaces are orthogonal.

Orthogonally Diagonalizing an » x n Symmetric Matrix
Step 1. Find a basis for each eigenspace of A.

Step 2. Apply the Gram—Schmidt process to each of these bases to obtain an or-
thonormal basis for each eigenspace.

Step 3. Form the matrix P whose columns are the vectors constructed in Step 2.
This matrix will orthogonally diagonalize A, and the eigenvalues on the diagonal
of D = P'AP will be in the same order as their corresponding eigenvectors in P.




Schur’s Theorem

THEOREM 7.2.3 Schur’s Theorem
If A is an n x n matrix with real entries and real eigenvalues, then there is an or-
thogonal matrix P such that PTAP is an upper triangular matrix of the form

Al X X e X
0 A x .- X

PAP=|0 0 X3 --- X (11)
L0 0 0 == 2.

in which hy, Ay, ..., A, are the eigenvalues of the matrix A repeated according to

multiplicity.



Hessenberg’'s Theorem

THEOREM 7.2.4 Hessenberg's Theorem

If A is an n x n matrix, then there is an orthogonal matrix P such that PTAP is a
matrix of the form - -

X X o0 X X X
X X
7 0 x = X X X
EaP = S (13)
0 0 X X X
_O 0 0 x X |

[t is common to denote the upper Hessenberg matrix in (13) by H (for Hessenberg).
in which case that equation can be rewritten as

A = PHPT (14)

which is called an upper Hessenberg decomposition of A.



3 Quadratic Forms

There are three important kinds of problems that occur in applications of quadratic
forms:

Problem 1 If x’Ax is a quadratic form on R? or R*, what kind of curve or surface
is represented by the equation x’Ax = k?

Problem 2 If x’Ax is a quadratic form on R", what conditions must A satisfy for
x’Ax to have positive values for x # 07?

Problem 3 Ifx’Ax is a quadratic form on R", what are its maximum and minimum
values if X is constrained to satisfy ||x|| = 1?



Conic Sections

:Paraboia Hyperbola

Ellipse

Circle



Central conics In standard
position
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Definite quadratic forms

DEFINITION 1 A quadratic form x’Ax is said to be
positive definite if x’Ax > 0 for x # 0
negative definite if x’Ax < 0 for x # 0

indefinite if x’Ax has both positive and negative values

THEOREM 7.3.2 [f A is a symmetric matrix, then:
(a) Xx'AX is positive definite if and only if all eigenvalues of A are positive.
(b) x!AX is negative definite if and only if all eigenvalues of A are negative.

(¢) x'AX is indefinite if and only if A has at least one positive eigenvalue and at
least one negative eigenvalue.



Ellipse? Hyperbola? Neither?

THEOREM 7.3.3 If A is a symmetric 2 X 2 matrix, then:
(a) x'Ax = 1 represents an ellipse if A is positive definite.
(b) x'Ax = 1 has no graph if A is negative definite.

(¢) x'Ax = 1 represents a hyperbola if A is indefinite.

THEOREM 7.3.4 A symmetric matrix A is positive definite if and only if the determi-
nant of every principal submatrix is positive.



4  Optimization Using Quadratic
Forms

THEOREM 7.4.1 Constrained Extremum Theorem

Let A be a symmetric n X n matrix whose eigenvalues in order of decreasing size are
Al = Ay = oo > Ay Then:

(a) the quadratic form x'AX attains a maximum value and a minimum value on the
set of vectors for which ||x|| = 1;

(b) the maximum value attained in part (a) occurs at a unit vector corresponding to
the eigenvalue Ay;

(¢) the minimum value attained in part (a) occurs at a unit vector corresponding to
the eigenvalue A,,.

Constrained z Constrained
minimum maximum

4

U | Ii ‘ y

-‘:/ LUnit circle




THEOREM 7.4.2 Second Derivative Test

Suppose that (xgy, vo) is a critical point of f(x, v) and that f has continuous second-
order partial derivatives in some circular region centered at (xg, vo). Then:

(a) [ has a relative minimum at (xg, vo) if
Fex (X0, Y0) fyy (X0, Yo) — foy (X0, ¥0) > 0 and  frx(x0, yo) > 0
(b) [ has a relative maximum at (xo, yo) if

fXX('xﬂ& .)'{})fyy(x{]- }"0) - f.x'zy(x{]a .),0) = 0 and fxx(x{}a .},0) = 0

(¢) [ has a saddle point at (xy, vo) if

Fex (X0, ¥0) fyy (X0, Y0) — foy(x0, o) < O

(d) The test is inconclusive if

Jxx (X0, o) fyy (X0, yo) — ff} (x0, Y0) =0

=

1 1“‘\‘%".'.... II' i
"‘.‘#\ﬁ'}"ﬂ; o) |
l' .W’-ﬂ"ﬁ'ﬂ"fﬂ i
* !

M
ﬁuiﬁ'

L. h!:'l,l

i}
1
Relative minimum at (0, 0) Relative maximum at (0, 0) Saddle point at (0,0) |




Hessian Form of the
second derivative test

THEOREM 74.32 Hessian Form of the Second Derivative Test

Suppose that (xy, o) is a critical point of f(x, v) and that [ has continuous second-
order partial derivatives in some circular region centered at (xq. vp). If H(xy, o) is
the Hessian of [ at (xg, Yo), then:

(@) [ has a relative minimum at (xg, ¥o) if H(xy. Vo) is positive definite.
(b) [ has a relative maximum at (xq. Vo) if H(xp, Vo) is negative definite.
(¢) [ has a saddle point at (xg, vo) if H(xg, vo) is indefinite.

(d) The test is inconclusive otherwise.



5 Hermitian, Unita and Normal
Matrices

DEFINITION 1 If A is a complex matrix, then the conjugate transpose of A, denoted
by A*, is defined by
A* = AT (1)

THEOREM 7.51 Ifk is a complex scalar, and if A, B, and C are complex matrices
whose sizes are such that the stated operations can be performed, then:

(@) (A%)*=A

() (A+B)*=A*+ B*
(c) (A— B)*= A*— B*
(d) (kA)* = kA*

(€) (AB)* = B*A*



Hermitian Matrices

DEFINITION 2 A square complex matrix A is said to be unitary if
A= A* (3)

and is said to be Hermitian if
A*=A (4)

THEOREM 75.2 The eigenvalues of a Hermitian matrix are real numbers.

THEOREM 7.5.3 If A is a Hermitian matrix, then eigenvectors from different eigen-
spaces are orthogonal.




Unitary Matrices

THEOREM 7.5.4 If A is an n » n matrix with complex entries, then the following are

equivalent.

(a) A is unitary.

(b) ||Ax]|| = ||x]|| for all x in C".

(c) Ax-Av=x-.vyforallxandyinC".

(d) The column vectors of A form an orthonormal set in C" with respect to the
complex Euclidean inner product.

(e) The row vectors of A form an orthonormal set in C" with respect to the complex
Euclidean inner product.

| DEFINITION 3 A square complex matrix is said to be unitarily diagonalizable it |
there is a unitary matrix P such that P*AP = D is a complex diagonal matrix. Any
such matrix P is said to unitarily diagonalize A.



Unitarily Diagonalizing
a Hermitian Matrix

THEOREM 7.5.5 Everyn x n Hermitian matrix A has an orthonormal set of n eigen-
vectors and is unitarily diagonalized by any n x n matrix P whose column vectors
Jform an orthonormal set of eigenvectors of A.

Unitarily Diagonalizing a Hermitian Matrix
Step 1. Find a basis for each eigenspace of A.

Step 2. Apply the Gram—Schmidt process to each of these bases to obtain orthonor-
mal bases for the eigenspaces.

Step 3. Form the matrix P whose column vectors are the basis vectors obtained in
Step 2. This will be a unitary matrix (Theorem 7.5.4) and will unitarily diagonal-
ize A.
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General Linear Transformations

| DEFINITION 1 IfT:V — W is a function from a vector space V to a vector space W,
then T is called a linear transformation from V to W if the following two properties
hold for all vectors u and v in V and for all scalars &:

(1) T(ku) = kT(u) |Homogenelty property]
(1) T(u+v)=T(u)+ T(v) [Additivity property]

In the special case where V = W, the linear transformation T is called a linear
operater on the vector space V.

THEOREM 811 IfT:V — W is a linear transformation, then:
(@) T(0)=0.
() T(u—v)=T(u)—T(v) foralluand vin V.



Dilation and Contraction
Operators

If V 1s a vector space and & is any scalar, then the mapping T: V — V given by T(x) = kx
is a linear operator on V, for if ¢ is any scalar and if u and v are any vectors in V, then

Ticu) = k{cu) = cl{ku) = cT(u)
Ma+v)=k(u+v)=~ku+kv=T(u)+ T(v)

If0 < k < 1, then T is called the contraction of V with factor k, andif & = 1, 1t1s called
the dilation of V with factor k (Figure 8.1.1).

' Dilation of V | | Contraction of V¥ .



Image, Kernel and Range

THEOREM 8.1.2 Let T :V — W be a linear transformation, where V is finite dimen-
sional. If § = {vy, vy, ..., v,} is a basis for V, then the image of any vector vin V
can be expressed as

I'(v) = T(v)) +c2T(va) + - - + ¢, T(vy) (3)

where ¢y, ¢z, . . .. ¢, are the coefficients required to express v as a linear combination
of the vectors in §.

| DEFINITION 2 If T: V — W is a linear transformation, then the set of vectors in V |

that 7 maps into 0 1s called the kernel of T and 1s denoted by ker(T). The set of all

vectors in W that are images under T of at least one vector in V is called the range
of T and is denoted by R(T).

THEOREM 8.1.3 IfT:V — W is a linear transformation, then:
(a) The kernel of T is a subspace of V.
(b) The range of T is a subspace of W.



Rank, Nullity and Dimension

DEFINITION 3 Let T: V — W be a linear transformation. If the range of T is finite-
dimensional, then its dimension is called the rank of T and if the kernel of T 1s
finite-dimensional, then its dimension is called the nullity of T. The rank of T 1s
denoted by rank(7) and the nullity of T by nullity(T').

THEOREM 8.1.4 Dimension Theorem for Linear Transformations

If T:V — W is a linear transformation from an n-dimensional vector space V fo a
vector space W, then

rank(7T) 4 nullity(T) = n (7)



Isomorphism

DEFINITION 1 If T: V — W 1s a linear transformation from a vector space V to a
vector space W, then T is said to be ene-to-one if T maps distinct vectors in V into
distinct vectors in W.

DEFINITION 2 If T: V — W 1s a linear transformation from a vector space V to a
vector space W, then T is said to be ento (or onfe W) if every vector in W is the
image of at least one vector in V.

Vv W v w A ok e R W | S W
iy —_ -
P >0 r
- -0 BN = e SR
- - ® '“\\' - :\
s = Range 1 Range
- -0 - - of T T of T
One-to-one. Distinct Mot one-to-one. There Onto W. Every vector in Mot onto W. Not every
wectors in V have exist distinct vectors in W is the image of some vector in W is the image

distinct images in W. V with the same image. vector in V. of some vector in V.




Isomorphism

THEOREM 821 If T:V — W is a linear transformation, then the following state-
menis are equivalent.

(@) T is one-to-one.
(B) ker(T) = {0}.

THEOREM 8.2.2 [If V is a finite-dimensional vector space, and if T:V —V is a
linear operator, then the following statemenis are equivalent.

(a) T is one-to-one.
(b) ker(T) = {0}.
(c) T isontolie, R(T)=V].

DEFINITION 3 If a linear transformation T: V — W is both one-to-one and onto,
then T is said to be an isemeorphism, and the vector spaces V and W are said to be

isomorphic.




Compositions and Inverse
Transformations

DEFINITION 1 If Ti: U —=V and T>: V — W are linear transformations, then the
composition of Tz with Ty, denoted by T3 o T} (which is read *7> circle T17), 1s the
function defined by the formula

(T2 o Ty )(u) = T2(T (u)) (1)
where u is a vector in U/,
TE a T]
ey . ey =
u Ty(u) (T {u))



Inverses
T=YT(v) =T""(w)=v i

T(T'w) =T(v)=w v T R(T)

THEOREM 832 If T:U —= V and T;: V — W are one-to-one linear transforma-
tions, then

(@) Tz o T is one-to-one.
) (o) '=T'oT "
: I 2



Matrices for General
Linear Transformations

Finding Tix) Indirectly

Step .  Compute the coordinate vector [x] 5.

Step 2. Multiply [x]z on the left by A to produce [T(x)]p-.
Step 3. Reconstruct T(x) from its coordinate vector [T(x)]g .

I maps
| Vinto W
:ir : _ Direct )
* >~ Hx) - computation e Hix)
l 1 }\ (3)

| - Multiply by A

Bl A Ly [x]; o Tl

"Mul'r.iplicaﬁﬂn

by A
L maps R" into R™




Matrix of Compositions
and Inverse Transformations

THEOREM 841 [fT1:U — V and T5: V — W are linear transformations, and if B,
B", and B’ are bases for U, V, and W, respectively, then

[T o Thlp g = [T2]lp g1 15" B (10)

THEOREM 84.2 [fT:V —V is a linear operator, and if B is a basis for V, then
the following are equivalent.

(a) T is one-to-one.
(b) [T is invertible.

Moreover, when these equivalent conditions hold,

[T '1p = [T15' (11)



THEOREM 8.5.3 Two matrices, A and B, are similar if and only if they represent
the same linear operator. Moreover, if B = P~'AP, then P is the transition matrix

from the basis relative to matrix B to the basis relative to matrix A.

Table 1 Similarity Invariants

Property Description

Determinant A and P~'AP have the same determinant.
Invertibility A is invertible if and only if P7!AP is invertible.
Rank A and P'AP have the same rank.

Nullity A and P~'AP have the same nullity.

Trace A and P~'AP have the same trace.

Characteristic polynomial | A and P~'AP have the same characteristic polynomial.

Eigenvalues A and P~'AP have the same eigenvalues.

Eigenspace dimension If A is an eigenvalue of A and P~'AP, then the eigenspace
of A corresponding to X and the eigenspace of P~'AP
corresponding to A have the same dimension.




Eigenvalues and Eigenvectors

Definition 1: A nonzero vector x is an eigenvector (or characteristic vector)
of a square matrix / if there exists a scalar / such that . Then i is an

eigenvalue (or characteristic value) of

Note: The zero vector can not be an eigenvector even though . But
can be an eigenvalue.

Example:




Geometric interpretation of
Eigenvalues and Eigenvectors

An nxn matrix A multiplied by nx1 vector x results in another
nx1 vector y=AX. Thus A can be considered as a
transformation matrix.

In general, a matrix acts on a vector by changing both its
magnitude and its direction. However, a matrix may act on
certain vectors by changing only their magnitude, and leaving
their direction unchanged (or possibly reversing it). These
vectors are the eigenvectors of the matrix.

A matrix acts on an eigenvector by multiplying its magnitude by
a factor, which is positive if its direction is unchanged and
negative If its direction is reversed. This factor is the eigenvalue
associated with that eigenvector.



6.2 Eigenvalues

Let x be an eigenvector of the matrix /. Then there must exist an

eigenvalue / such that or, equivalently,
or
If we define a new matrix , then
If = has an inverse then . But an eigenvector cannot
be zero.

Thus, it follows that x will be an eigenvector of ~ if and only if
does not have an inverse, or equivalently , or

This Is called the characteristic equation of /. Its roots
determine the eigenvalues of



6.2 Eigenvalues: examples

Example 1: Find the eigenvalues of A —

I - A=

|| ~2

i s

125|
=( =2)(I +5)+12
| +

=1°+3 +2=( +D(I +2)

two eigenvalues: -1, — 2

Note: The roots of the characteristic equation can be repeated. That is, A; = A,
=...= A\.. If that happens, the eigenvalue is said to be of multiplicity k.

Example 2: Find the eigenvalues of 2 1 0
A=|0 2 O
0O 0 2
-2 -1 0 - -
IH-A=| 0 -2 0 |[=(0-2°=0
0 0 | _2 A = 2 iIs an eigenvector of multiplicity 3.




6.3 Eigenvectors

To each distinct eigenvalue of a matrix A there will correspond at least one
eigenvector which can be found by solving the appropriate set of homogenous
equations. If A; is an eigenvalue then the corresponding eigenvector X; is the
solution of

Example 1 (cont.):

{—3 12} {1 —4}
| =-1:(-DI - A= —
-1 4 0 O

X —4x, =0= X =4t, X, =t

RN
X, 1

-4 12 1 -3
N e R

A



6.3 Eigenvectors

Example 2 (cont.): Find the eigenvectors of A=

O O N
O N B

Recall that A = 2 Iis an eigenvector of multiplicity_S.
Solve the homogeneous linear system represented by

0 -1 0
2l —Ax=[0 0 O
0 0 0

X
X2

X

0
0
0

Let X =S %=1 The eigen_ve_ctor_s of A = 2 are of the

form

x| [s| [1] [O]
X=X,

» S and t not both zero.

N O O




6.4 Properties of Eigenvalues and Eigenvectors

Definition: The trace of a matrix A, designated by tr(A), is the sum
of the elements on the main diagonal.

Property 1: The sum of the eigenvalues of a matrix equals the
trace of the matrix.

Property 2: A matrix is singular if and only if it has a zero
eigenvalue.

Property 3: The eigenvalues of an upper (or lower) triangular
matrix are the elements on the main diagonal.

Property 4: If A is an eigenvalue of A and A is invertible, then 1/A
IS an eigenvalue of matrix A2



6.4 Properties of Eigenvalues and
Eigenvectors

Property 5: If A Is an eigenvalue of A then kA Is an eigenvalue of
KA where k Is any arbitrary scalar.

Property 6: If A is an eigenvalue of A then AKX is an eigenvalue of
AK for any positive integer k.

Property 8: If A is an eigenvalue of A then A is an eigenvalue of A'.

Property 9: The product of the eigenvalues (counting multiplicity)
of a matrix equals the determinant of the matrix.



6.5 Linearly independent eigenvectors

Theorem: Eigenvectors corresponding to distinct (that is, different)
eigenvalues are linearly independent.

Theorem: If A is an eigenvalue of multiplicity k of an n x n matrix
A then the number of linearly independent eigenvectors of A
associated with A is given by m = n - r(A- Al). Furthermore, 1 <£m

< K.

Example 2 (cont.): The eigenvectors of A = 2 are of the form

SRexETs

X
X2

%

S
0
t

=S

1
0
0

+1

0
0
1

s and t not both zero.

A =2 has two linearly independent eigenvectors



