Advanced Linear Algebra

References:

[A] Howard Anton \& Chris Rorres. (2000). Elementary Linear Algebra. New York: John Wiley \& Sons, Inc
[B] Setya Budi, W. 1995. Aljabar Linear. Jakarta: Gramedia
R. Rosnawati

Jurusan Pendidikan Matematika FMIPA UNY

Inner Product Spaces

- 1 Inner Products
- 2 Angle and Orthogonality in Inner Product Spaces
- 3 Gram-Schmidt Process; QR-Decomposition
- 4 Best Approximation; Least Squares
- 5 Least Squares Fitting to Data
- 6 Function Approximation; Fourier Series

1 Inner Products

DEFINITION 1 An inner product on a real vector space V is a function that associates a real number $\langle\mathbf{u}, \mathbf{v}\rangle$ with each pair of vectors in V in such a way that the following axioms are satisfied for all vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} in V and all scalars k.

1. $\langle\mathbf{u}, \mathbf{v}\rangle=\langle\mathbf{v}, \mathbf{u}\rangle \quad$ [Symmetry axiom]
2. $\langle\mathbf{u}+\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{w}\rangle+\langle\mathbf{v}, \mathbf{w}\rangle \quad$ [Additivity axiom]
3. $\langle k \mathbf{u}, \mathbf{v}\rangle=k\langle\mathbf{u}, \mathbf{v}\rangle \quad$ [Homogeneity axiom]
4. $\langle\mathbf{v}, \mathbf{v}\rangle \geq 0$ and $\langle\mathbf{v}, \mathbf{v}\rangle=0$ if and only if $\mathbf{v}=\mathbf{0}$ [Positivity axiom]

A real vector space with an inner product is called a real inner product space.

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

2. Algebraic Properties of Inner Products

THEOREM 6.1.2 If \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors in a real inner product space V, and if k is a scalar, then:
(a) $\langle\mathbf{0}, \mathbf{v}\rangle=\langle\mathbf{v}, \mathbf{0}\rangle=\mathbf{0}$
(b) $\langle\mathbf{u}, \mathbf{v}+\mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle+\langle\mathbf{u}, \mathbf{w}\rangle$
(c) $\langle\mathbf{u}, \mathbf{v}-\mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle-\langle\mathbf{u}, \mathbf{w}\rangle$
(d) $\langle\mathbf{u}-\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{w}\rangle-\langle\mathbf{v}, \mathbf{w}\rangle$
(e) $k\langle\mathbf{u}, \mathbf{v}\rangle=\langle\mathbf{u}, k \mathbf{v}\rangle$

θ : the angle between u and v

$$
\theta=\cos ^{-1}\left(\frac{\langle\mathbf{u}, \mathbf{v}\rangle}{\|\mathbf{u}\|\|\mathbf{v}\|}\right)
$$

DEFINITION 1 Two vectors \mathbf{u} and \mathbf{v} in an inner product space are called orthogonal if $\langle\mathbf{u}, \mathbf{v}\rangle=0$.

3 Gram-Schmidt Process; QRDecomposition

> The Gram-Schmidt Process To convert a basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{r}\right\}$ into an orthogonal basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$, perform the following computations: Step 1. $\quad \mathbf{v}_{1}=\mathbf{u}_{1}$ Step 2. $\quad \mathbf{v}_{2}=\mathbf{u}_{2}-\frac{\left\langle\mathbf{u}_{2}, \mathbf{v}_{1}\right\rangle}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}$ Step 3. $\quad \mathbf{v}_{3}=\mathbf{u}_{3}-\frac{\left\langle\mathbf{u}_{3}, \mathbf{v}_{1}\right\rangle}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}-\frac{\left\langle\mathbf{u}_{3}, \mathbf{v}_{2}\right\rangle}{\left\|\mathbf{v}_{2}\right\|^{2}} \mathbf{v}_{2}$ Step 4. $\quad \mathbf{v}_{4}=\mathbf{u}_{4}-\frac{\left\langle\mathbf{u}_{4}, \mathbf{v}_{1}\right\rangle}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}-\frac{\left\langle\mathbf{u}_{4}, \mathbf{v}_{2}\right\rangle}{\left\|\mathbf{v}_{2}\right\|^{2}} \mathbf{v}_{2}-\frac{\left\langle\mathbf{u}_{4}, \mathbf{v}_{3}\right\rangle}{\left\|\mathbf{v}_{3}\right\|^{2}} \mathbf{v}_{3}$ \vdots (continue for r steps) Optional Step. To convert the orthogonal basis into an orthonormal basis $\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{r}\right\}$, normalize the orthogonal basis vectors.

QR-Decomposition

THEOREM 6.3.7 $Q R$-Decomposition

If A is an $m \times n$ matrix with linearly independent column vectors, then A can be factored as

$$
A=Q R
$$

where Q is an $m \times n$ matrix with orthonormal column vectors, and R is an $n \times n$ invertible upper triangular matrix.

4. Best Approximation; Least Squares

Least Squares Problem Given a linear system $A \mathbf{x}=\mathbf{b}$ of m equations in n unknowns, find a vector \mathbf{x} that minimizes $\|\mathbf{b}-A \mathbf{x}\|$ with respect to the Euclidean inner product on R^{m}. We call such an \mathbf{x} a least squares solution of the system, we call $\mathbf{b}-A \mathbf{x}$ the least squares error vector, and we call $\|\mathbf{b}-A \mathbf{x}\|$ the least squares error.

THEOREM 6.4.1 Best Approximation Theorem

If W is a finite-dimensional subspace of an inner product space V, and if \mathbf{b} is a vector in V, then $\operatorname{proj}_{W} \mathbf{b}$ is the best approximation to \mathbf{b} from W in the sense that

$$
\left\|\mathbf{b}-\operatorname{proj}_{W} \mathbf{b}\right\|<\|\mathbf{b}-\mathbf{w}\|
$$

for every vector \mathbf{w} in W that is different from $\operatorname{proj}_{W} \mathbf{b}$.

Least squares solutions to $A \mathbf{x}=$ b

THEOREM 6.4.2 For every linear system $A \mathbf{x}=\mathbf{b}$, the associated normal system

$$
\begin{equation*}
A^{T} A \mathbf{x}=A^{T} \mathbf{b} \tag{5}
\end{equation*}
$$

is consistent, and all solutions of (5) are least squares solutions of $A \mathbf{x}=\mathbf{b}$. Moreover, if W is the column space of A, and \mathbf{x} is any least squares solution of $A \mathbf{x}=\mathbf{b}$, then the orthogonal projection of \mathbf{b} on W is

$$
\begin{equation*}
\operatorname{proj}_{W} \mathbf{b}=A \mathbf{x} \tag{6}
\end{equation*}
$$

THEOREM 6.4.6 Equivalent Statements

If A is an $n \times n$ matrix, then the following statements are equivalent.
(a) A is invertible.
(b) $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(c) The reduced row echelon form of A is I_{n}.
(d) A is expressible as a product of elementary matrices.
(e) $A \mathbf{x}=\mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b}.
(f) $A \mathbf{x}=\mathbf{b}$ has exactly one solution for every $n \times 1$ matrix \mathbf{b}.
(g) $\operatorname{det}(A) \neq 0$.
(h) The column vectors of A are linearly independent.
(i) The row vectors of A are linearly independent.
(j) The column vectors of A span R^{n}.
(k) The row vectors of A span R^{n}.
(l) The column vectors of A form a basis for R^{n}.
(m) The row vectors of A form a basis for R^{n}.
(n) A has rank n.
(o) A has nullity 0 .
(p) The orthogonal complement of the null space of A is R^{n}.
(q) The orthogonal complement of the row space of A is $\{0\}$.
(r) The range of T_{A} is R^{n}.
(s) T_{A} is one-to-one.
(t) $\lambda=0$ is not an eigenvalue of A.
(u) $A^{T} A$ is invertible.

5 Least Squares Fitting to Data

(a) $y=a+b x$

(b) $y=a+b x+c x^{2}$

(c) $y=a+b x+c x^{2}+d x^{3}$

The Least Squares Solution

THEOREM 6.5.1 Uniqueness of the Least Squares Solution

Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ be a set of two or more data points, not all lying on a vertical line, and let

$$
M=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right] \text { and } \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Then there is a unique least squares straight line fit

$$
y=a^{*}+b^{*} x
$$

to the data points. Moreover,

$$
\mathbf{v}^{*}=\left[\begin{array}{l}
a^{*} \\
b^{*}
\end{array}\right]
$$

is given by the formula

$$
\begin{equation*}
\mathbf{v}^{*}=\left(M^{T} M\right)^{-1} M^{T} \mathbf{y} \tag{6}
\end{equation*}
$$

which expresses the fact that $\mathbf{v}=\mathbf{v}^{*}$ is the unique solution of the normal equations

$$
\begin{equation*}
M^{T} M \mathbf{v}=M^{T} \mathbf{y} \tag{7}
\end{equation*}
$$

6 Function Approximation; Fourier Series

THEOREM 6.6.1 If \mathbf{f} is a continuous function on $[a, b]$, and W is a finite-dimensional subspace of $C[a, b]$, then the function \mathbf{g} in W that minimizes the mean square error

$$
\int_{a}^{b}[f(x)-g(x)]^{2} d x
$$

is $\mathbf{g}=\operatorname{proj}_{W} \mathbf{f}$, where the orthogonal projection is relative to the inner product

$$
\langle\mathbf{f}, \mathbf{g}\rangle=\int_{a}^{b} f(x) g(x) d x
$$

The function $\mathbf{g}=\operatorname{proj}_{W} \mathbf{f}$ is called the least squares approximation to \mathbf{f} from W.

Fourier Coefficients \& Series

A function of the form

$$
\begin{align*}
T(x)=c_{0}+c_{1} \cos x+c_{2} \cos 2 x & +\cdots+c_{n} \cos n x \\
& +d_{1} \sin x+d_{2} \sin 2 x+\cdots+d_{n} \sin n x \tag{2}
\end{align*}
$$

is called a trigonometric polynomial; if c_{n} and d_{n} are not both zero, then $T(x)$ is said to have order \boldsymbol{n}. For example,

$$
T(x)=2+\cos x-3 \cos 2 x+7 \sin 4 x
$$

is a trigonometric polynomial of order 4 with

$$
c_{0}=2, \quad c_{1}=1, \quad c_{2}=-3, \quad c_{3}=0, \quad c_{4}=0, \quad d_{1}=0, \quad d_{2}=0, \quad d_{3}=0, \quad d_{4}=7
$$

$$
\operatorname{proj}_{W} \mathbf{f}=\frac{a_{0}}{2}+\left[a_{1} \cos x+\cdots+a_{n} \cos n x\right]+\left[b_{1} \sin x+\cdots+b_{n} \sin n x\right]
$$

$$
a_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos k x d x, \quad b_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin k x d x
$$

The numbers $a_{0}, a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ are called the Fourier coefficients of \mathbf{f}.

$$
f(x)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos k x+b_{k} \sin k x\right)
$$

Fourier Approximation to $\mathrm{y}=\mathrm{x}$

$$
x \approx \pi-2\left(\sin x+\frac{\sin 2 x}{2}+\frac{\sin 3 x}{3}+\cdots+\frac{\sin n x}{n}\right)
$$

The graphs of $y=x$ and some of these approximations are shown in Figure 6.6.4.
\rightarrow Figure 6.6.4

Diagonalization \& Quadratic Forms

- 1 Orthogonal Matrices
- 2 Orthogonal Diagonalization
- 3 Quadratic Forms
- 4 Optimization Using Quadratic Forms
- 5 Hermitian, Unitary, and Normal Matrices

1 Orthogonal Matrices

DEFINITION 1 A square matrix A is said to be orthogonal if its transpose is the same as its inverse, that is, if

$$
A^{-1}=A^{T}
$$

or, equivalently, if

$$
\begin{equation*}
A A^{T}=A^{T} A=I \tag{1}
\end{equation*}
$$

THEOREM 7.1. 1 The following are equivalent for an $n \times n$ matrix A.
(a) A is orthogonal.
(b) The row vectors of A form an orthonormal set in R^{n} with the Euclidean inner product.
(c) The column vectors of A form an orthonormal set in R^{n} with the Euclidean inner product.

THEOREM 7.1.2

(a) The inverse of an orthogonal matrix is orthogonal.
(b) A product of orthogonal matrices is orthogonal.
(c) If A is orthogonal, then $\operatorname{det}(A)=1$ or $\operatorname{det}(A)=-1$.

THEOREM 7.1.3 If A is an $n \times n$ matrix, then the following are equivalent.
(a) A is orthogonal.
(b) $\|A \mathbf{x}\|=\|\mathbf{x}\|$ for all \mathbf{x} in R^{n}.
(c) $A \mathbf{x} \cdot A \mathbf{y}=\mathbf{x} \cdot \mathbf{y}$ for all \mathbf{x} and \mathbf{y} in R^{n}.

Orthonormal Basis

THEOREM 7.1.4 If S is an orthonormal basis for an n-dimensional inner product space V, and if

$$
(\mathbf{u})_{S}=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \quad \text { and } \quad(\mathbf{v})_{S}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)
$$

then:
(a) $\|\mathbf{u}\|=\sqrt{u_{1}^{2}+u_{2}^{2}+\cdots+u_{n}^{2}}$
(b) $d(\mathbf{u}, \mathbf{v})=\sqrt{\left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}+\cdots+\left(u_{n}-v_{n}\right)^{2}}$
(c) $\langle\mathbf{u}, \mathbf{v}\rangle=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}$

THEOREM 7.1.5 Let V be a finite-dimensional inner product space. If P is the transition matrix from one orthonormal basis for V to another orthonormal basis for V, then P is an orthogonal matrix.

Orthogonal Diagonalization

DEFINITION 1 If A and B are square matrices, then we say that A and B are orthogonally similar if there is an orthogonal matrix P such that $P^{T} A P=B$.

If A is orthogonally similar to some diagonal matrix, say

$$
P^{T} A P=D
$$

then we say that A is orthogonally diagonalizable and that P orthogonally diagonalizes A.

THEOREM 7.2.1 If A is an $n \times n$ matrix, then the following are equivalent.
(a) A is orthogonally diagonalizable.
(b) A has an orthonormal set of n eigenvectors.
(c) A is symmetric.

Symmetric Matrices

THEOREM 7.2.2 If A is a symmetric matrix, then:
(a) The eigenvalues of A are all real numbers.
(b) Eigenvectors from different eigenspaces are orthogonal.

Orthogonally Diagonalizing an $n \times n$ Symmetric Matrix

Step 1. Find a basis for each eigenspace of A.
Step 2. Apply the Gram-Schmidt process to each of these bases to obtain an orthonormal basis for each eigenspace.
Step 3. Form the matrix P whose columns are the vectors constructed in Step 2. This matrix will orthogonally diagonalize A, and the eigenvalues on the diagonal of $D=P^{T} A P$ will be in the same order as their corresponding eigenvectors in P.

Schur's Theorem

THEOREM 7.2.3 Schur's Theorem

If A is an $n \times n$ matrix with real entries and real eigenvalues, then there is an orthogonal matrix P such that $P^{T} A P$ is an upper triangular matrix of the form

$$
P^{T} A P=\left[\begin{array}{ccccc}
\lambda_{1} & \times & \times & \cdots & \times \tag{11}\\
0 & \lambda_{2} & \times & \cdots & \times \\
0 & 0 & \lambda_{3} & \cdots & \times \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

in which $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigenvalues of the matrix A repeated according to multiplicity.

Hessenberg's Theorem

THEOREM 7.2.4 Hessenberg's Theorem

If A is an $n \times n$ matrix, then there is an orthogonal matrix P such that $P^{T} A P$ is a matrix of the form

$$
P^{T} A P=\left[\begin{array}{cccccc}
\times & \times & \cdots & \times & \times & \times \tag{13}\\
\times & \times & \cdots & \times & \times & \times \\
0 & \times & \ddots & \times & \times & \times \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \times & \times & \times \\
0 & 0 & \cdots & 0 & \times & \times
\end{array}\right]
$$

It is common to denote the upper Hessenberg matrix in (13) by H (for Hessenberg), in which case that equation can be rewritten as

$$
\begin{equation*}
A=P H P^{T} \tag{14}
\end{equation*}
$$

which is called an upper Hessenberg decomposition of A.

3 Quadratic Forms

There are three important kinds of problems that occur in applications of quadratic forms:

Problem 1 If $\mathbf{x}^{T} A \mathbf{x}$ is a quadratic form on R^{2} or R^{3}, what kind of curve or surface is represented by the equation $\mathbf{x}^{T} A \mathbf{x}=k$?
Problem 2 If $\mathbf{x}^{T} A \mathbf{x}$ is a quadratic form on R^{n}, what conditions must A satisfy for $\mathbf{x}^{T} A \mathbf{x}$ to have positive values for $\mathbf{x} \neq \mathbf{0}$?
Problem 3 If $\mathbf{x}^{T} A \mathbf{x}$ is a quadratic form on R^{n}, what are its maximum and minimum values if \mathbf{x} is constrained to satisfy $\|\mathbf{x}\|=1$?

Conic Sections

Circle

Ellipse

Parabola

Hyperbola

Central conics in standard position

Table 1

$$
\begin{gathered}
\frac{x^{2}}{\alpha^{2}}+\frac{y^{2}}{\beta^{2}}=1 \\
(\alpha \geq \beta>0)
\end{gathered}
$$

$$
\begin{aligned}
& \frac{x^{2}}{\alpha^{2}}+\frac{y^{2}}{\beta^{2}}=1 \\
& (\beta \geq \alpha>0) \\
& \hline
\end{aligned}
$$

$$
\begin{gathered}
\frac{x^{2}}{\alpha^{2}}-\frac{y^{2}}{\beta^{2}}=1 \\
(\alpha>0, \beta>0)
\end{gathered}
$$

$$
\begin{array}{|c|}
\hline \frac{y^{2}}{\beta^{2}}-\frac{x^{2}}{\alpha^{2}}=1 \\
(\alpha>0, \beta>0)
\end{array}
$$

Definite quadratic forms

DEFINITION 1 A quadratic form $\mathbf{x}^{T} A \mathbf{x}$ is said to be positive definite if $\mathbf{x}^{T} A \mathbf{x}>0$ for $\mathbf{x} \neq \mathbf{0}$ negative definite if $\mathbf{x}^{T} A \mathbf{x}<0$ for $\mathbf{x} \neq \mathbf{0}$
indefinite if $\mathbf{x}^{T} A \mathbf{x}$ has both positive and negative values

THEOREM 7.3.2 If A is a symmetric matrix, then:
(a) $\mathbf{x}^{T} A \mathbf{x}$ is positive definite if and only if all eigenvalues of A are positive.
(b) $\mathbf{x}^{T} A \mathbf{x}$ is negative definite if and only if all eigenvalues of A are negative.
(c) $\mathbf{x}^{T} A \mathbf{x}$ is indefinite if and only if A has at least one positive eigenvalue and at least one negative eigenvalue.

Ellipse? Hyperbola? Neither?

THEOREM 7.3.3 If A is a symmetric 2×2 matrix, then:
(a) $\mathbf{x}^{T} A \mathbf{x}=1$ represents an ellipse if A is positive definite.
(b) $\mathbf{x}^{T} A \mathbf{x}=1$ has no graph if A is negative definite.
(c) $\mathbf{x}^{T} A \mathbf{x}=1$ represents a hyperbola if A is indefinite.

THEOREM 7.3.4 A symmetric matrix A is positive definite if and only if the determinant of every principal submatrix is positive.

4 Optimization Using Quadratic Forms

THEOREM 7.4.1 Constrained Extremum Theorem

Let A be a symmetric $n \times n$ matrix whose eigenvalues in order of decreasing size are $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. Then:
(a) the quadratic form \mathbf{x}^{T} A \mathbf{x} attains a maximum value and a minimum value on the set of vectors for which $\|\mathbf{x}\|=1$;
(b) the maximum value attained in part (a) occurs at a unit vector corresponding to the eigenvalue λ_{1};
(c) the minimum value attained in part (a) occurs at a unit vector corresponding to the eigenvalue λ_{n}.

THEOREM 7.4.2 Second Derivative Test

Suppose that $\left(x_{0}, y_{0}\right)$ is a critical point of $f(x, y)$ and that f has continuous secondorder partial derivatives in some circular region centered at $\left(x_{0}, y_{0}\right)$. Then:
(a) f has a relative minimum at $\left(x_{0}, y_{0}\right)$ if

$$
f_{x x}\left(x_{0}, y_{0}\right) f_{y y}\left(x_{0}, y_{0}\right)-f_{x y}^{2}\left(x_{0}, y_{0}\right)>0 \quad \text { and } \quad f_{x x}\left(x_{0}, y_{0}\right)>0
$$

(b) f has a relative maximum at $\left(x_{0}, y_{0}\right)$ if

$$
f_{x x}\left(x_{0}, y_{0}\right) f_{y y}\left(x_{0}, y_{0}\right)-f_{x y}^{2}\left(x_{0}, y_{0}\right)>0 \quad \text { and } \quad f_{x x}\left(x_{0}, y_{0}\right)<0
$$

(c) f has a saddle point at $\left(x_{0}, y_{0}\right)$ if

$$
f_{x x}\left(x_{0}, y_{0}\right) f_{y y}\left(x_{0}, y_{0}\right)-f_{x y}^{2}\left(x_{0}, y_{0}\right)<0
$$

(d) The test is inconclusive if

$$
f_{x x}\left(x_{0}, y_{0}\right) f_{y y}\left(x_{0}, y_{0}\right)-f_{x y}^{2}\left(x_{0}, y_{0}\right)=0
$$

Relative minimum at $(0,0)$

Relative maximum at $(0,0)$

Saddle point at $(0,0)$

Hessian Form of the second derivative test

THEOREM 7.4.3 Hessian Form of the Second Derivative Test

Suppose that $\left(x_{0}, y_{0}\right)$ is a critical point of $f(x, y)$ and that f has continuous secondorder partial derivatives in some circular region centered at $\left(x_{0}, y_{0}\right)$. If $H\left(x_{0}, y_{0}\right)$ is the Hessian of f at $\left(x_{0}, y_{0}\right)$, then:
(a) f has a relative minimum at $\left(x_{0}, y_{0}\right)$ if $H\left(x_{0}, y_{0}\right)$ is positive definite.
(b) f has a relative maximum at $\left(x_{0}, y_{0}\right)$ if $H\left(x_{0}, y_{0}\right)$ is negative definite.
(c) f has a saddle point at $\left(x_{0}, y_{0}\right)$ if $H\left(x_{0}, y_{0}\right)$ is indefinite.
(d) The test is inconclusive otherwise.

5 Hermitian, Unita and Normal Matrices

DEFINITION 1 If A is a complex matrix, then the conjugate transpose of A, denoted by A^{*}, is defined by

$$
\begin{equation*}
A^{*}=\bar{A}^{T} \tag{1}
\end{equation*}
$$

THEOREM 7.5.1 If k is a complex scalar, and if A, B, and C are complex matrices whose sizes are such that the stated operations can be performed, then:
(a) $\left(A^{*}\right)^{*}=A$
(b) $(A+B)^{*}=A^{*}+B^{*}$
(c) $(A-B)^{*}=A^{*}-B^{*}$
(d) $(k A)^{*}=\bar{k} A^{*}$
(e) $(A B)^{*}=B^{*} A^{*}$

Hermitian Matrices

DEFINITION 2 A square complex matrix A is said to be unitary if

$$
\begin{equation*}
A^{-1}=A^{*} \tag{3}
\end{equation*}
$$

and is said to be Hermitian ${ }^{*}$ if

$$
\begin{equation*}
A^{*}=A \tag{4}
\end{equation*}
$$

THEOREM 7.5.2 The eigenvalues of a Hermitian matrix are real numbers.

THEOREM 7.5.3 If A is a Hermitian matrix, then eigenvectors from different eigenspaces are orthogonal.

Unitary Matrices

THEOREM 7.5.4 If A is an $n \times n$ matrix with complex entries, then the following are equivalent.
(a) A is unitary.
(b) $\|A \mathbf{x}\|=\|\mathbf{x}\|$ for all \mathbf{x} in C^{n}.
(c) $A \mathbf{x} \cdot A \mathbf{y}=\mathbf{x} \cdot \mathbf{y}$ for all \mathbf{x} and \mathbf{y} in C^{n}.
(d) The column vectors of A form an orthonormal set in C^{n} with respect to the complex Euclidean inner product.
(e) The row vectors of A form an orthonormal set in C^{n} with respect to the complex Euclidean inner product.

DEFINITION 3 A square complex matrix is said to be unitarily diagonalizable if there is a unitary matrix P such that $P^{*} A P=D$ is a complex diagonal matrix. Any such matrix P is said to unitarily diagonalize A.

Unitarily Diagonalizing a Hermitian Matrix

THEOREM 7.5.5 Every $n \times n$ Hermitian matrix A has an orthonormal set of n eigenvectors and is unitarily diagonalized by any $n \times n$ matrix P whose column vectors form an orthonormal set of eigenvectors of A.

Unitarily Diagonalizing a Hermitian Matrix

Step 1. Find a basis for each eigenspace of A.
Step 2. Apply the Gram-Schmidt process to each of these bases to obtain orthonormal bases for the eigenspaces.
Step 3. Form the matrix P whose column vectors are the basis vectors obtained in Step 2 . This will be a unitary matrix (Theorem 7.5.4) and will unitarily diagonalize A.

I. Linear Transformations

- General Linear Transformations
- Isomorphisms
- Compositions and Inverse

Transformations

- Matrices for General Linear

Transformations

- Similarity

General Linear Transformations

DEFINITION 1 If $T: V \rightarrow W$ is a function from a vector space V to a vector space W, then T is called a linear transformation from V to W if the following two properties hold for all vectors \mathbf{u} and \mathbf{v} in V and for all scalars k :
(i) $\quad T(k \mathbf{u})=k T(\mathbf{u}) \quad$ [Homogenelty property|
(ii) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v}) \quad$ |Additivity propertyl

In the special case where $V=W$, the linear transformation T is called a linear operator on the vector space V.

THEOREM 8.1.1 If $T: V \rightarrow W$ is a linear transformation, then:
(a) $T(0)=0$.
(b) $T(\mathbf{u}-\mathbf{v})=T(\mathbf{u})-T(\mathbf{v})$ for all \mathbf{u} and \mathbf{v} in V.

Dilation and Contraction Operators

If V is a vector space and k is any scalar, then the mapping $T: V \rightarrow V$ given by $T(\mathbf{x})=k \mathbf{x}$ is a linear operator on V, for if c is any scalar and if \mathbf{u} and \mathbf{v} are any vectors in V, then

$$
\begin{aligned}
& T(c \mathbf{u})=k(c \mathbf{u})=c(k \mathbf{u})=c T(\mathbf{u}) \\
& T(\mathbf{u}+\mathbf{v})=k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}=T(\mathbf{u})+T(\mathbf{v})
\end{aligned}
$$

If $0<k<1$, then T is called the contraction of V with factor k, and if $k>1$, it is called the dilation of V with factor k (Figure 8.1.1).

Dilation of V

Contraction of V

Image, Kernel and Range

THEOREM 8.1.2 Let $T: V \rightarrow W$ be a linear transformation, where V is finite dimensional. If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for V, then the image of any vector \mathbf{v} in V can be expressed as

$$
\begin{equation*}
T(\mathbf{v})=c_{1} T\left(\mathbf{v}_{1}\right)+c_{2} T\left(\mathbf{v}_{2}\right)+\cdots+c_{n} T\left(\mathbf{v}_{n}\right) \tag{3}
\end{equation*}
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are the coefficients required to express \mathbf{v} as a linear combination of the vectors in S.

DEFINITION 2 If $T: V \rightarrow W$ is a linear transformation, then the set of vectors in V that T maps into 0 is called the kernel of T and is denoted by $\operatorname{ker}(T)$. The set of all vectors in W that are images under T of at least one vector in V is called the range of T and is denoted by $R(T)$.

THEOREM 8.1.3 If $T: V \rightarrow W$ is a linear transformation, then:
(a) The kernel of T is a subspace of V.
(b) The range of T is a subspace of W.

Rank, Nullity and Dimension

DEFINITION 3 Let $T: V \rightarrow W$ be a linear transformation. If the range of T is finitedimensional, then its dimension is called the rank of T; and if the kernel of T is finite-dimensional, then its dimension is called the nullity of T. The rank of T is denoted by $\operatorname{rank}(T)$ and the nullity of T by nullity (T).

THEOREM 8.1.4 Dimension Theorem for Linear Transformations

If $T: V \rightarrow W$ is a linear transformation from an n-dimensional vector space V to a vector space W, then

$$
\begin{equation*}
\operatorname{rank}(T)+\operatorname{nullity}(T)=n \tag{7}
\end{equation*}
$$

Isomorphism

DEFINITION 1 If $T: V \rightarrow W$ is a linear transformation from a vector space V to a vector space W, then T is said to be one-to-one if T maps distinct vectors in V into distinct vectors in W.

DEFINITION 2 If $T: V \rightarrow W$ is a linear transformation from a vector space V to a vector space W, then T is said to be onto (or onto W) if every vector in W is the image of at least one vector in V.

Isomorphism

THEOREM 8.2.1 If $T: V \rightarrow W$ is a linear transformation, then the following statements are equivalent.
(a) T is one-to-one.
(b) $\operatorname{ker}(T)=\{0\}$.

THEOREM 8.2.2 If V is a finite-dimensional vector space, and if $T: V \rightarrow V$ is a linear operator, then the following statements are equivalent.
(a) T is one-to-one.
(b) $\operatorname{ker}(T)=\{0\}$.
(c) T is onto [i.e., $R(T)=V]$.

DEFINITION 3 If a linear transformation $T: V \rightarrow W$ is both one-to-one and onto, then T is said to be an isomorphism, and the vector spaces V and W are said to be isomorphic.

Compositions and Inverse Transformations

DEFINITION 1 If $T_{1}: U \rightarrow V$ and $T_{2}: V \rightarrow W$ are linear transformations, then the composition of T_{2} with T_{1}, denoted by $T_{2} \circ T_{1}$ (which is read " T_{2} circle T_{1} "), is the function defined by the formula

$$
\begin{equation*}
\left(T_{2} \circ T_{1}\right)(\mathbf{u})=T_{2}\left(T_{1}(\mathbf{u})\right) \tag{1}
\end{equation*}
$$

where \mathbf{u} is a vector in U.

Inverses

$$
\begin{aligned}
& T^{-1}(T(\mathbf{v}))=T^{-1}(\mathbf{w})=\mathbf{v} \\
& T\left(T^{-1}(\mathbf{w})\right)=T(\mathbf{v})=\mathbf{w}
\end{aligned}
$$

THEOREM 8.3.2 If $T_{1}: U \rightarrow V$ and $T_{2}: V \rightarrow W$ are one-to-one linear transformations, then
(a) $T_{2} \circ T_{1}$ is one-to-one.
(b) $\left(T_{2} \circ T_{1}\right)^{-1}=T_{1}^{-1} \circ T_{2}^{-1}$.

Matrices for General Linear Transformations

Finding $T(x)$ Indirectly

Step 1. Compute the coordinate vector $[\mathbf{x}]_{B}$.
Step 2. Multiply $[\mathbf{x}]_{B}$ on the left by A to produce $[T(\mathbf{x})]_{B^{\prime}}$.
Step 3. Reconstruct $T(\mathbf{x})$ from its coordinate vector $[T(\mathbf{x})]_{B^{\prime}}$.

Matrix of Compositions and Inverse Transformations

THEOREM 8.4.1 If $T_{1}: U \rightarrow V$ and $T_{2}: V \rightarrow W$ are linear transformations, and if B, $B^{\prime \prime}$, and B^{\prime} are bases for U, V, and W, respectively, then

$$
\begin{equation*}
\left[T_{2} \circ T_{1}\right]_{B^{\prime}, B}=\left[T_{2}\right]_{B^{\prime}, B^{\prime \prime}}\left[T_{1}\right]_{B^{\prime \prime}, B} \tag{10}
\end{equation*}
$$

THEOREM 8.4.2 If $T: V \rightarrow V$ is a linear operator, and if B is a basis for V, then the following are equivalent.
(a) T is one-to-one.
(b) $[T]_{B}$ is invertible.

Moreover, when these equivalent conditions hold,

$$
\begin{equation*}
\left[T^{-1}\right]_{B}=[T]_{B}^{-1} \tag{11}
\end{equation*}
$$

Similarity

THEOREM 8.5.3 Two matrices, A and B, are similar if and only if they represent the same linear operator. Moreover, if $B=P^{-1} A P$, then P is the transition matrix from the basis relative to matrix B to the basis relative to matrix A.

Table 1 Similarity Invariants

Property	Description
Determinant	A and $P^{-1} A P$ have the same determinant.
Invertibility	A is invertible if and only if $P^{-1} A P$ is invertible.
Rank	A and $P^{-1} A P$ have the same rank.
Nullity	A and $P^{-1} A P$ have the same nullity.
Trace	A and $P^{-1} A P$ have the same trace.
Characteristic polynomial	A and $P^{-1} A P$ have the same characteristic polynomial.
Eigenvalues	A and $P^{-1} A P$ have the same eigenvalues.
Eigenspace dimension	If λ is an eigenvalue of A and $P^{-1} A P$, then the eigenspace of A corresponding to λ and the eigenspace of $P^{-1} A P$ corresponding to λ have the same dimension.

Eigenvalues and Eigenvectors

Definition 1: A nonzero vector x is an eigenvector (or characteristic vector) of a square matrix A if there exists a scalar λ such that $A x=\lambda x$. Then λ is an eigenvalue (or characteristic value) of A .

Note: The zero vector can not be an eigenvector even though $\mathrm{A} 0=\lambda 0$. But λ $=0$ can be an eigenvalue.

Example:

Geometric interpretation of Eigenvalues and Eigenvectors

An $\mathrm{n} \times \mathrm{n}$ matrix \mathbf{A} multiplied by $\mathrm{n} \times 1$ vector \mathbf{x} results in another $\mathrm{n} \times 1$ vector $\mathbf{y}=\mathbf{A x}$. Thus \mathbf{A} can be considered as a transformation matrix.

In general, a matrix acts on a vector by changing both its magnitude and its direction. However, a matrix may act on certain vectors by changing only their magnitude, and leaving their direction unchanged (or possibly reversing it). These vectors are the eigenvectors of the matrix.

A matrix acts on an eigenvector by multiplying its magnitude by a factor, which is positive if its direction is unchanged and negative if its direction is reversed. This factor is the eigenvalue associated with that eigenvector.

6.2 Eigenvalues

Let x be an eigenvector of the matrix A. Then there must exist an eigenvalue λ such that $\quad A x=\lambda x \quad$ or, equivalently,

$$
A x-\lambda x=0 \quad \text { or }
$$

$$
(A-\lambda I) x=0
$$

If we define a new matrix $B=A-\lambda I$, then

$$
B x=0
$$

If B has an inverse then $x=B^{-1} 0=0$. But an eigenvector cannot be zero.

Thus, it follows that x will be an eigenvector of A if and only if B does not have an inverse, or equivalently $\operatorname{det}(B)=0$, or

$$
\operatorname{det}(A-\lambda I)=0
$$

This is called the characteristic equation of A. Its roots determine the eigenvalues of A.

6.2 Eigenvalues: examples

Example 1: Find the eigenvalues of $A=\left[\begin{array}{cc}2 & -12 \\ 1 & -5\end{array}\right]$

$$
\begin{aligned}
|\lambda I-A| & =\left|\begin{array}{cc}
\lambda-2 & 12 \\
-1 & \lambda+5
\end{array}\right|=(\lambda-2)(\lambda+5)+12 \\
& =\lambda^{2}+3 \lambda+2=(\lambda+1)(\lambda+2)
\end{aligned}
$$

two eigenvalues: -1, - 2
Note: The roots of the characteristic equation can be repeated. That is, $\lambda_{1}=\lambda_{2}$ $=\ldots=\lambda_{k}$. If that happens, the eigenvalue is said to be of multiplicity k .
Example 2: Find the eigenvalues of
$A=\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$
$|\lambda I-A|=\left|\begin{array}{ccc}\lambda-2 & -1 & 0 \\ 0 & \lambda-2 & 0 \\ 0 & 0 & \lambda-2\end{array}\right|=\begin{gathered}(\lambda-2)^{3}=0 \\ \lambda=2 \text { is an eig }\end{gathered}$

6.3 Eigenvectors

To each distinct eigenvalue of a matrix \mathbf{A} there will correspond at least one eigenvector which can be found by solving the appropriate set of homogenous equations. If λ_{i} is an eigenvalue then the corresponding eigenvector \mathbf{x}_{i} is the solution of $\left(A-\lambda_{i} \|\right) x_{i}=0$

Example 1 (cont.):

$$
\begin{gathered}
\lambda=-1:(-1) I-A=\left[\begin{array}{cc}
-3 & 12 \\
-1 & 4
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
1 & -4 \\
0 & 0
\end{array}\right] \\
x_{1}-4 x_{2}=0 \Rightarrow x_{1}=4 t, x_{2}=t \\
\mathbf{x}_{1}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=t\left[\begin{array}{l}
4 \\
1
\end{array}\right], t \neq 0 \\
\lambda=-2:(-2) I-A=\left[\begin{array}{ll}
-4 & 12 \\
-1 & 3
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
1 & -3 \\
0 & 0
\end{array}\right] \\
\mathbf{x}_{2}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=s\left[\begin{array}{l}
3 \\
1
\end{array}\right], s \neq 0
\end{gathered}
$$

6.3 Eigenvectors

Example 2 (cont.): Find the eigenvectors of $A=\left[\begin{array}{lll}0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$
Recall that $\lambda=2$ is an eigenvector of multiplicity 3 .
Solve the homogeneous linear system represented by

$$
(2 I-A) \mathbf{x}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Let $x_{1}=s, x_{3}=t$. The eigenvectors of $\lambda=2$ are of the form

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
s \\
0 \\
t
\end{array}\right]=s\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad s \text { and } t \text { not both zero. }
$$

6.4 Properties of Eigenvalues and Eigenvectors

Definition: The trace of a matrix A, designated by $\operatorname{tr}(\mathrm{A})$, is the sum of the elements on the main diagonal.

Property 1: The sum of the eigenvalues of a matrix equals the trace of the matrix.

Property 2: A matrix is singular if and only if it has a zero eigenvalue.

Property 3: The eigenvalues of an upper (or lower) triangular matrix are the elements on the main diagonal.

Property 4: If λ is an eigenvalue of A and A is invertible, then $1 / \lambda$ is an eigenvalue of matrix A^{-1}.

6.4 Properties of Eigenvalues and Eigenvectors

Property 5: If $\boldsymbol{\lambda}$ is an eigenvalue of \mathbf{A} then $\boldsymbol{k} \boldsymbol{\lambda}$ is an eigenvalue of $k A$ where k is any arbitrary scalar.

Property 6: If λ is an eigenvalue of A then λ^{k} is an eigenvalue of A^{k} for any positive integer k.

Property 8: If λ is an eigenvalue of A then λ is an eigenvalue of A^{\top}.

Property 9: The product of the eigenvalues (counting multiplicity) of a matrix equals the determinant of the matrix.

6.5 Linearly independent eigenvectors

Theorem: Eigenvectors corresponding to distinct (that is, different) eigenvalues are linearly independent.
Theorem: If λ is an eigenvalue of multiplicity k of an $\mathbf{n} \times \mathbf{n}$ matrix A then the number of linearly independent eigenvectors of A associated with λ is given by $m=n-r(A-\lambda I)$. Furthermore, $1 \leq m$ $\leq k$.

Example 2 (cont.): The eigenvectors of $\lambda=2$ are of the form

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
s \\
0 \\
t
\end{array}\right]=s\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad s \text { and } t \text { not both zero. }
$$

$\lambda=2$ has two linearly independent eigenvectors

