

Jaslin Ikhsan, Ph.D.

 Kimia FMIPA UNY

Course Summary.

- Dependence of rate on concentration.
- Experimental methods in reaction kinetics.
- Kinetics of multistep reactions.
- Dependence of rate on temperature.

Recommended reading.

1. P.W. Atkins, Kimia Fisika (terjemahan), jilid 2, edisi keempat, Jakarta: Erlangga, 1999.
2. P.W. Atkins, Physical Chemistry, 5th ed., Oxford: Oxford University Press, 1994
3. Gordon M. Barrow, Physical Chemistry
4. Arthur M. Lesk, Introduction to Physical Chemistry

Time, t

Chemical Kinetics.

Lecture 1.
 Review of Basic concepts.

Reaction Rate: The Central Focus of Chemical Kinetics

Reaction:
 \square $\longrightarrow 0$

Chemical reaction kinetics.

- Chemical reactions involve the forming and breaking of chemical bonds.
- Reactant molecules $\left(\mathrm{H}_{2}, \mathrm{I}_{2}\right)$ approach one another and collide and interact with appropriate energy and orientation. Bonds are stretched, broken and formed and finally product molecules (HI) move away from one another.
- How can we describe the rate at which such a chemical transformation takes place?
reactants

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{~g})
$$

- Thermodynamics tells us all about the energetic feasibility of a reaction: we measure the Gibbs energy ΔG for the chemical Reaction.
- Thermodynamics does not tell us how quickly the reaction will proceed : it does not provide kinetic information.

Basic ideas in reaction kinetics.

- Chemical reaction kinetics deals with the rate of velocity of chemical reactions.
- We wish to quantify
- The velocity at which reactants are transformed to products
- The detailed molecular pathway by which a reaction proceeds (the reaction mechanism).
- These objectives are accomplished using experimental measurements.
- Chemical reactions are said to be activated processes : energy (usually thermal (heat) energy) must be introduced into the system so that chemical transformation can occur. Hence chemical reactions occur more rapidly when the temperature of the system is increased.
- In simple terms an activation energy barrier must be overcome before reactants can be transformed into products.

Reaction Rate.

- What do we mean by the term reaction rate?
- The term rate implies that something changes with respect to something else.
- How may reaction rates be determined?
- The reaction rate is quantified in terms of the change in concentration of a reactant or product species with respect to time.
- This requires an experimental measurement of the manner in which the concentration changes with time of reaction. We can monitor either the concentration change directly, or monitor changes in some physical quantity which is directly proportional to the concentration.
- The reactant concentration decreases with increasing time, and the product concentration increases with increasing time.
- The rate of a chemical reaction depends on the concentration of each of the participating reactant species.
- The manner in which the rate changes in magnitude with changes in the magnitude of each of the participating reactants is termed the

time

Rate, rate equation and reaction order : formal definitions.

- The reaction rate (reaction velocity) R is quantified in terms of changes in concentration [J] of reactant or product species J with respect to changes in time. The magnitude of the reaction rate changes as the reaction proceeds.

$$
R_{J}=\frac{1}{v_{J}} \lim _{\Delta t \rightarrow 0} \frac{\Delta[J]}{\Delta t}=\frac{1}{v_{J}} \frac{d[J]}{d t}
$$

$$
\begin{aligned}
& 2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g) \\
& R=-\frac{1}{2} \frac{d\left[\mathrm{H}_{2}\right]}{d t}=-\frac{d\left[\mathrm{O}_{2}\right]}{d t}=\frac{1}{2} \frac{d\left[\mathrm{H}_{2} \mathrm{O}\right]}{d t}
\end{aligned}
$$

- Note : Units of rate :- concentration/time, hence R_{J} has units $\mathrm{mol} \mathrm{dm}^{-3} s^{-1}$. v_{J} denotes the stoichiometric coefficient of species J . If J is a reactant v_{J} is negative and it will be positive if J is a product species.
- Rate of reaction is often found to be proportional to the molar concentration of the reactants raised to a simple power (which need not be integral). This relationship is called the rate equation The manner in which the reaction rate changes in magnitude with changes in the magnitude of the concentration of each participating reactant species is called the reaction order.

Problem Example:

The rate formation of NO in the reaction:
$2 \mathrm{NOBr}(\mathrm{g})$----> $2 \mathrm{NO}(\mathrm{g})+\mathrm{Br} 2(\mathrm{~g})$
was reported as $1.6 \times 10-4 \mathrm{~mol} /(\mathrm{Ls})$.
What is the rate of reaction and the rate of consumption of NOBr ?

Measuring Rate Laws: Isolation

F'r instance: $\quad \mathrm{A}+\mathrm{B} \rightarrow$ Products

$$
R=\frac{1}{v_{A}} \frac{d[\mathrm{~A}]}{d t}=\frac{1}{v_{B}} \frac{d[\mathrm{~B}]}{d t}=\frac{1}{v_{Z}} \frac{d[\mathrm{Z}]}{d t}
$$

form of rate law : $\quad \mathrm{v}(t)=k[\mathrm{~A}]^{\alpha}[B]^{\beta}$
Choose conditions: [A] >> [B]
$\therefore[\mathrm{A}]-d[\mathrm{~A}] \approx[\mathrm{A}]$
(Method of isolation)

$$
\begin{array}{ll}
R=k[\mathrm{~A}]^{\alpha}[B]^{\beta} \approx k^{\prime}[B]^{\beta} & k^{\prime}=k[\mathrm{~A}]^{\alpha} \\
\text { if }[\mathrm{A}] \ll[\mathrm{B}]: & R \approx k^{\prime \prime}[\mathrm{A}]^{\alpha} \\
k^{\prime \prime}=k[\mathrm{~B}]^{\beta}
\end{array}
$$

Measuring Rate Laws: Initial Rates

F'r instance: A $+\mathrm{B} \rightarrow$ Products $\quad R=k[\mathrm{~A}]^{\alpha}[B]^{\beta}$

$$
R=\frac{1}{v_{A}} \frac{d[\mathrm{~A}]}{d t}=k[\mathrm{~A}]^{\alpha}[B]^{\beta} \approx \frac{1}{v_{A}} \frac{\Delta[\mathrm{~A}]}{\Delta t} \quad \Delta t \rightarrow d t
$$

measure $\mathrm{R}_{1} @[B]_{1}, \mathrm{R}_{2} @[B]_{2}$, etc.

$$
[\mathrm{A}]_{0}-d[\mathrm{~A}] \approx[\mathrm{A}]_{0} ; \quad[\mathrm{B}]_{j}-d[\mathrm{~B}] \approx[\mathrm{B}]_{j} \quad(\Delta t \rightarrow d t)
$$

$$
R_{1}=k[\mathrm{~A}]_{0}^{\alpha}[B]_{1}^{\beta} \approx \frac{1}{v_{A}}\left(\frac{\Delta[\mathrm{~A}]}{\Delta t}\right)_{1}
$$

$$
1 \text { st measurement }
$$

$$
R_{2}=k[\mathrm{~A}]_{0}^{\alpha}[B]_{2}^{\beta} \approx \frac{1}{v_{A}}\left(\frac{\Delta[\mathrm{~A}]}{\Delta t}\right)_{2} \quad 2 \text { nd measurement }
$$

Measuring Rate Laws: Initial Rates

$$
\begin{gathered}
R_{1}=k[\mathrm{~A}]_{0}^{\alpha}[B]_{1}^{\beta} \approx \frac{1}{v_{A}}\left(\frac{\Delta[\mathrm{~A}]}{\Delta t}\right)_{1} \\
R_{2}=k[\mathrm{~A}]_{0}^{\alpha}[B]_{2}^{\beta} \approx \frac{1}{v_{A}}\left(\frac{\Delta[\mathrm{~A}]}{\Delta t}\right)_{2} \\
\text { 2nd measuremen } \mathrm{t} \\
\frac{R_{1}}{R_{2}}=\frac{k[\mathrm{~A}]_{0}^{\alpha}[B]_{1}^{\beta}}{k[\mathrm{~A}]_{0}^{\alpha}[B]_{2}^{\beta}}=\left(\frac{[B]_{1}}{[B]_{2}}\right)^{\beta} \quad \therefore \beta=\frac{\ln \left(R_{1} / R_{2}\right)}{\ln \left([B]_{1} /[B]_{2}\right)} \\
\frac{R_{3}}{R_{4}}=\frac{k[\mathrm{~A}]_{3}^{\alpha}[B]_{0}^{\beta}}{k[\mathrm{~A}]_{4}^{\alpha}[B]_{0}^{\beta}}=\left(\frac{[A]_{3}}{[A]_{4}}\right)^{\alpha} \quad \therefore \alpha=\frac{\ln \left(R_{3} / R_{4}\right)}{\ln \left([A]_{3} /[A]_{4}\right)}
\end{gathered}
$$

Rate equation can not in
rate constant k
empirical rate equation (obtained from experiment)

Limits to methods of isolation and initial rates

- Assumed reactants can be mixed in any proportion desired
- Reaction rate can be measured
- Mixing time ($\sim 1 \mathrm{~ms}$) vs. reaction time

Other approaches:

- Relaxation methods (e.g. temperature jump)
- Time resolved methods

Different rate equations imply different mechanisms.

$$
\begin{aligned}
& \mathrm{H}_{2}+\mathrm{X}_{2} \rightarrow 2 \mathrm{HX} \\
& X=\mathrm{I}, \mathrm{Br}, \mathrm{Cl}
\end{aligned}
$$

$\mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow 2 \mathrm{HI}$
$R=\frac{d[H I]}{d t}=k\left[H_{2}\right]\left[I_{2}\right]$
$\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr}$
$R=\frac{d[\mathrm{HBr}]}{d t}=\frac{k\left[\mathrm{H}_{2}\right]\left[\mathrm{Br} r_{2}{ }^{1 / 2}\right.}{1+\frac{k^{\prime}[H B r]}{\left[B r_{2}\right]}}$
$\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$
$R=\frac{d[\mathrm{HCl}]}{d t}=k\left[\mathrm{H}_{2}\right]\left[\mathrm{Cl}_{2}\right]^{1 / 2}$

- The rate law provides an important guide to reaction mechanism, since any proposed mechanism must be consistent with the observed rate law.
- A complex rate equation will imply a complex multistep reaction mechanism.
- Once we know the rate law and the rate constant for a reaction, we can predict the rate of the reaction for any given composition of the reaction mixture.
- We can also use a rate law to predict the concentrations of reactants and products at any time after the start of the reaction.

Zero order kinetics. The reaction proceeds at the same rate R regardless of concentration.

Rate equation :

$$
\begin{aligned}
& R=-\frac{d a}{d t}=k \\
& a=a_{0} \text { when } \quad t=0
\end{aligned}
$$

\square integrate using initial condition

$$
a(t)=-k t+a_{0}
$$

diagnostic plot

$$
R=-\frac{d a}{d t}=k \longleftarrow \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}
$$

a

$$
\text { half life }: \begin{aligned}
& t=\tau_{1 / 2} \text { when } \quad a=\frac{a_{0}}{2} \\
& \tau_{1 / 2}=\frac{a_{0}}{2 k} \quad \tau_{1 / 2} \propto a_{0}
\end{aligned}
$$

First order kinetics.

First order differential rate equation.

$$
-\frac{d a}{d t}=k a
$$

Initial condition

$$
t=0 \quad a=a_{0}
$$

Solve differential equation

Separation
of variables

$$
a(t)=a_{0} e^{-k t}=a_{0} \exp [-k t]
$$

For a first order reaction the relationship:
$(\text { rate })_{t} \propto[A]_{t} \quad$ is valid generally for any time t . $(\text { rate })_{t}=k[A]_{t} \quad \mathrm{k}$ is the first order rate constant, units: s^{-1}

1
Reactant concentration as function of time.

First order kinetics.

$$
\begin{aligned}
& a(t)=a_{0} e^{-k t}=a_{0} \exp [-k t] \\
& u=\frac{a(t)}{a_{0}}=\exp [-\theta] \\
& \theta=k t
\end{aligned}
$$

Mean lifetime of reactant molecule

$$
\tau=\frac{1}{a_{0}} \int_{0}^{\infty} a(t) d t=\frac{1}{a_{0}} \int_{0}^{\infty} a_{0} e^{-k t} d t=\frac{1}{k}
$$

1st order kinetics

2nd order kinetics

Second order kinetics: equal reactant concentrations.

$$
2 A \xrightarrow{k} P
$$

$-\frac{d a}{d t}=k a^{2}$
$t=0$

separate variables integrate
half life $\quad t=\tau_{1 / 2} \quad a=\frac{a_{0}}{2}$

$$
\frac{1}{a}=k t+\frac{1}{a_{0}}
$$

$$
\begin{aligned}
& \tau_{1 / 2}=\frac{1}{k a_{0}} \\
& \tau_{1 / 2} \propto \frac{1}{a_{0}} \\
& \tau_{1 / 2} \downarrow \text { as } \quad a_{0} \uparrow
\end{aligned}
$$

rate varies as square of reactant concentration

1st and 2nd order kinetics : Summary .

Reaction	Differential rate equation	Concentration variation with time	Diagnostic Equation	Half Life
$\underset{A \xrightarrow[\text { Products }]{k_{1}}}{ }-\frac{d a}{d t}=k_{1} a$	$a(t)=$ $a_{0} \exp \left[-k_{1} t\right]$	$\ln a(t)=-k_{1} t+\ln a_{0}$	$\tau_{1 / 2}=\frac{\ln 2}{k_{1}}$	
$2 A \xrightarrow[\text { Products }]{k_{2}}-\frac{d a}{d t}=k_{2} a^{2}$	$a(t)=$	$\frac{a_{0}}{1+k_{2} a_{0} t}$		

$\ln \mathrm{a}(\mathrm{t})$

Diagnostic Plots .

n th order kinetics: equal reactant concentrations.

$$
\begin{array}{|c|c}
-\frac{d a}{d t}=k a^{n} \\
t=0 \quad a=a_{0} & \begin{array}{l}
\text { separate variables } \\
\text { integrate }
\end{array} \\
n \neq 1
\end{array} \quad \begin{array}{|c}
\frac{1}{a^{n-1}}=(n-1) k t+\frac{1}{a_{0}^{n-1}}
\end{array}
$$

$$
\mathrm{n}=0,2,3, \ldots .
$$

rate constant k obtained from slope

Half life

$$
\begin{array}{ll}
\begin{array}{ll}
\tau_{1 / 2}=\frac{2^{n-1}-1}{(n-1) k a_{0}^{n-1}} & \\
\ln \tau_{1 / 2}=\ln \left\{\frac{2^{n-1}-1}{(n-1) k}\right\}-(n-1) \ln a_{0} \\
\begin{array}{ll}
\tau_{1 / 2} \propto a_{0}^{1-n} & \\
n>1 & \tau_{1 / 2} \downarrow \text { as } a_{0} \uparrow \\
n<1 & \tau_{1 / 2} \uparrow \text { as } a_{0} \uparrow
\end{array} & \text { reaction order } n \text { determined } \\
&
\end{array} .
\end{array}
$$

Summary of kinetic results.

$$
n A \xrightarrow{k} P \quad \begin{array}{lc}
t=0 & a=a_{0} \\
t=\tau_{1 / 2} & a=\frac{a_{0}}{2}
\end{array}
$$

Rate equation

Reaction Order	$R=-\frac{d a^{2}}{d t}$	Integrated expression	Units of k	Half life $\tau_{1 / 2}$
$\mathbf{0}$	k	$a(t)=-k t+a_{0}$	$\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$	$\frac{a_{0}}{2 k}$
1	$k a$	$\ln \left\{\frac{a_{0}}{a(t)\}}\right\}=k t$	$\mathrm{~s}^{-1}$	$\frac{\ln 2}{k}$
2	$k a^{2}$	$\frac{1}{a(t)}=k t+\frac{1}{a_{0}}$	$\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$	$\frac{1}{k a_{0}}$
$\mathbf{3}$	$k a^{3}$	$\frac{1}{a(t)^{2}}=2 k t+\frac{1}{a_{0}{ }^{2}}$	$\mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$	$\frac{3}{2 k a_{0}{ }^{2}}$
\mathbf{n}	$k a^{n}$	$\frac{1}{a^{n-1}}=(n-1) k t+\frac{1}{a_{0} 0^{n-1}}$		$\frac{1}{n-1}\left\{\frac{2^{n-1}-1}{k a_{0}{ }^{n-1}}\right\}$

Problem Examples:

1. A first order reaction is 40% complete at the end of 1 h . What is the value of the rate constant?
In how long willl the reaction be 80% complete ?
2. The half-life of the radioactive disintegration of radium is 1590 years. Calculate the decay constant. In how many years will three-quarters of the radium have undergone decay ?
3. Derive the rate equation for reaction whose orders are: (a). one-half, (b). three and a-half, (c). 4, and (d). n!

Chemical Kinetics

Lecture 2.
 Kinetics of more complex reactions.

Jaslin Ikhsan, Ph.D. Kimia FMIPA Universitas Negeri Jogjakarta

Tujuan Perkuliahan:

1. Menurunkan Rate Law dari Kinetika Reaksi yang lebih Kompleks,
2. Menjelaskan Consecutive Reactions: a. Rate Determining Steps, b. Steady State Approximation.

Reference:

1. P.W. Atkins, Physical Chemistry, 5th ed, Oxford: 1994
2. Ira N. Levine, Physical Chemistry

Second order kinetics:

 Unequal reactant concentrations.
rate equation
$R=-\frac{d a}{d t}=-\frac{d b}{d t}=\frac{d p}{d t}=k a b$
initial conditions
$t=0 \quad a=a_{0} \quad b=b_{0} \quad a_{0} \neq b_{0}$
integrate using partial fractions

$$
F(a, b)=\frac{1}{b_{0}-a_{0}}\left\{\ln \left(\frac{b / b_{0}}{a / a_{0}}\right)\right\}=k t
$$

Consecutive Reactions .

$A \xrightarrow{k_{1}} X \xrightarrow{k_{2}} P$

- Mother / daughter radioactive decay.

$$
\begin{aligned}
& { }^{218} \mathrm{Po} \rightarrow{ }^{214} \mathrm{~Pb} \rightarrow{ }^{214} \mathrm{Bi} \\
& k_{1}=5 \times 10^{-3} \mathrm{~s}^{-1} \quad k_{2}=6 \times 10^{-4} \mathrm{~s}^{-1}
\end{aligned}
$$

3 coupled LDE's define system :

Mass balance requirement:

$$
p=a_{0}-a-x
$$

The solutions to the coupled equations are :

$$
\begin{aligned}
& a(t)=a_{0} \exp \left[-k_{1} t\right] \\
& x(t)=\frac{k_{1} a_{0}}{k_{2}-k_{1}}\left\{\exp \left[-k_{1} t\right]-\exp \left[-k_{2} t\right]\right\} \\
& p(t)=a_{0}-a_{0} \exp \left[-k_{1} t\right]-\frac{k_{1} a_{0}}{k_{2}-k_{1}}\left\{\exp \left[-k_{1} t\right]-\exp \left[-k_{2} t\right]\right\}
\end{aligned}
$$

We get different kinetic behaviour depending on the ratio of the rate constants k_{1} and k_{2}

Consecutive reaction : Case I.
Intermediate formation fast, intermediate decomposition slow.

Step II is rate determining since it has the highest activation energy barrier.

The reactant species A will be more reactive than the intermediate X.

Initial reactant A more

 reactive than intermediate X.Concentration of intermediate significant over time course of reaction.

Consecutive reactions Case II:
Intermediate formation slow, intermediate decomposition fast.

key parameter
Intermediate X fairly reactive. [X] will be small at all times.

reaction co-ordinate
$A \xrightarrow{k_{1}} X \xrightarrow{k_{2}} P$

Intermediate X is fairly reactive. Concentration of intermediate X will be small at all times.

Intermediate concentration is approximately constant after initial induction period.

$$
A \xrightarrow[\text { Fast }]{k_{1}} X \underset{\text { Slow }}{k_{2}} P
$$

- Reactant A decays rapidly, concentration of intermediate species X is high for much of the reaction and product P concentration rises gradually since X--> P transformation is slow .

$$
A \underset{\text { Slow }}{k_{1}} X \underset{\text { Fast }}{k_{2}} P
$$

- Reactant A decays slowly, concentration of intermediate species X will be low for the duration of the reaction and to a good approximation the net rate of change of intermediate concentration with time is zero. Hence the intermediate will be formed as quickly as it is removed.
This is the quasi steady state approximation (QSSA).

Parallel reaction mechanism.

- We consider the kinetic analysis of a concurrent or parallel reaction scheme which is often met in real situations.
- A single reactant species can form two distinct products.
We assume that each reaction exhibits $1^{\text {st }}$ order kinetics.
- Initial condition : $t=0, a=a_{0} ; x=0, y=0$
- Rate equation:

$$
R=-\frac{d a}{d t}=k_{1} a+k_{2} a=\left(k_{1}+k_{2}\right) a=k_{\Sigma} a
$$

$$
\begin{aligned}
& A \xrightarrow{k_{1}} X \\
& A \xrightarrow{k_{2}} Y
\end{aligned}
$$

$k_{1}, k_{2}=1^{\text {st }}$ order rate constants
We can also obtain expressions for the product concentrations $x(t)$ and $y(t)$.

$$
\begin{aligned}
& \begin{array}{l}
\frac{d x}{d t}=k_{1} a=k_{1} a_{0} \exp \left[-\left(k_{1}+k_{2}\right) t\right] \\
x(t)=k_{1} a_{0} \int_{0}^{t} \exp \left[-\left(k_{1}+k_{2}\right) t\right] d t \\
x(t)=\frac{k_{1} a_{0}}{k_{1}+k_{2}}\left\{1-\exp \left[-\left(k_{1}+k_{2}\right) t\right]\right\} \\
\frac{d y}{d t}=k_{2} a=k_{2} a_{0} \exp \left[-\left(k_{1}+k_{2}\right) t\right] \\
y(t)=k_{2} a_{0} \int_{0}^{t} \exp \left[-\left(k_{1}+k_{2}\right) t\right] d t \\
y(t)=\frac{k_{2} a_{0}}{k_{1}+k_{2}}\left\{1-\exp \left[-\left(k_{1}+k_{2}\right) t\right]\right\}
\end{array}
\end{aligned}
$$

- Half life:

$$
\tau_{1 / 2}=\frac{\ln 2}{k_{\Sigma}}=\frac{\ln 2}{k_{1}+k_{2}}
$$

$$
\operatorname{Lim}_{t \rightarrow \infty} \frac{x(t)}{y(t)}=\frac{k_{1}}{k_{2}}
$$

Parallel Mechanism: $\mathrm{k}_{1} \gg \mathrm{k}_{2}$

Parallel Mechanism: $\mathrm{k}_{2} \gg \mathrm{k}_{1}$

Reaching Equilibrium on the Macroscopic and Molecular Level

Chemical Equilibrium : a kinetic definition.

- Countless experiments with chemical systems have shown that in a state of equilibrium, the concentrations of reactants and products no longer change with time.
- This apparent cessation of activity occurs because under such conditions, all reactions are microscopically reversible.
- We look at the dinitrogen tetraoxide/ nitrogen oxide equilibrium which occurs in the gas phase.

colourless

Kinetic analysis.

$$
\begin{array}{r}
\vec{R}=k\left[N_{2} O_{4}\right] \\
\Omega \vec{R}=k^{\prime}\left[N O_{2}\right]^{2}
\end{array}
$$

Equilibrium:
$t \rightarrow \infty$
brown

$$
\begin{aligned}
& \vec{R}=\bar{R} \\
& k\left[N_{2} O_{4}\right]_{e q}=k^{\prime}\left[\mathrm{NO}_{2}\right]_{e q}{ }^{2} \\
& {\left[\begin{array}{ll}
& \left.\mathrm{N}_{2}\right]_{e q} \\
\left.\hline \mathrm{~N}_{2} \mathrm{O}_{4}\right] & \frac{k}{k^{\prime}}=K
\end{array}\right.}
\end{aligned}
$$

Concentrations vary with time

Concentrations time
invariant

$$
\begin{aligned}
& {\left[\mathrm{NO}_{2}\right]_{e q}} \\
& {\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]_{e q}}
\end{aligned}
$$

 state NO_{2}

Equilibrium constant

First order reversible reactions : understanding the approach to chemical equilibrium.

$$
\mathrm{A} \underset{\mathrm{k}^{\prime}}{\stackrel{\mathrm{k}}{\underset{ }{2}} \mathrm{~B} \text {, }} \mathrm{A}
$$

Rate equation

$$
\frac{d a}{d t}=-k a+k^{\prime} b
$$

$$
\begin{aligned}
& u+v=1 \\
& \tau=0 \quad u=1 \quad v=0
\end{aligned}
$$

Rate equation in normalised form

$$
\frac{d u}{d \tau}+u=\frac{1}{1+\theta}
$$

Solution produces the concentration expressions

$$
\begin{aligned}
& u(\tau)=\frac{1}{1+\theta}\{1+\theta \exp [-\tau]\} \\
& v(\tau)=\frac{\theta}{1+\theta}\{1-\exp [-\tau]\}
\end{aligned}
$$

$$
u=\frac{a}{a_{0}} \quad v=\frac{b}{a_{0}} \quad \tau=\left(k+k^{\prime}\right) t \quad \theta=\frac{k}{k^{\prime}}
$$

$$
Q(\tau)=\frac{v(\tau)}{u(\tau)}=\theta\left\{\frac{1-\exp [-\tau]}{1+\theta \exp [-\tau]}\right\}
$$

Reaction quotient Q

First order reversible reactions: approach to equilibrium.

Understanding the difference between reaction quotient Q and Equilibrium constant K.

$$
Q(\tau)=\frac{v(\tau)}{u(\tau)}=\theta\left\{\frac{1-\exp [-\tau]}{1+\theta \exp [-\tau]}\right\} \quad t \rightarrow \infty \quad Q \rightarrow K=\theta=\frac{k}{k^{\prime}} \quad K=\frac{v(\infty)}{u(\infty)}
$$

Chemical Kinetics.

Lecture 3/4.
Application of the Steady State Approximation: Macromolecules and Enzymes.

- Detailed mathematical analysis of complex reaction mechanisms is difficult.

Quasi-Steady State Approximation. QSSA Some useful methods for solving sets of coupled linear differential rate equations include matrix methods and Laplace Transforms.

- In many cases utilisation of the quasi steady state approximation leads to a considerable simplification in the kinetic analysis.

The QSSA assumes that after an initial induction period (during which the concentration x of intermediates X rise from zero), and during the major part of the reaction, the rate of change of concentrations of all reaction intermediates are negligibly small.

Mathematically, QSSA implies

$$
\begin{aligned}
& \frac{d x}{d t}=R_{X \text { formation }}-R_{X \text { removal }} \cong 0 \\
& R_{X \text { formation }}=R_{X \text { removal }}
\end{aligned}
$$

Consecutive reaction mechanisms.

$$
\mathrm{A} \underset{\mathrm{k}_{-1}}{\stackrel{\mathrm{k}_{1}}{\sim}} \mathrm{X} \xrightarrow{\mathrm{k}_{2}} \mathrm{P}
$$

$$
\begin{aligned}
& \text { Rate } \\
& \text { equations } \\
& \frac{d u}{d \tau}=-u+\kappa v \\
& \frac{d v}{d \tau}=u-(\kappa+\phi) v \\
& \frac{d w}{d \tau}=\phi v
\end{aligned}
$$

$$
\begin{aligned}
& u=\frac{a}{a_{0}} \quad v=\frac{x}{a_{0}} \quad w=\frac{p}{a_{0}} \\
& \forall \tau \\
& \tau+v+w=1 \\
& \tau=0 \quad u=1 \quad v=w=0 \\
& \kappa=\frac{k_{-1}}{k_{1}} \quad \phi=\frac{k_{2}}{k_{1}} \quad \tau=k_{1} t
\end{aligned}
$$

Definition of normalised variables and initial condition.

Step I is reversible, step II is Irreversible.

Coupled LDE's can be solved via Laplace Transform or other methods.

$$
\begin{aligned}
& u(\tau)=\frac{1}{\beta-\alpha}\{(\kappa+\phi-\alpha) \exp [-\alpha \tau]-(\kappa+\phi-\beta) \exp [-\beta \tau]\} \\
& v(\tau)=\frac{1}{\beta-\alpha}\{\exp [-\alpha \tau]-\exp [-\beta \tau]\} \\
& w(\tau)=1-\frac{1}{\beta-\alpha}\{\beta \exp [-\alpha \tau]-\alpha \exp [-\beta \tau]\}
\end{aligned}
$$

Note that α and β are composite quantities containing the individual rate constants.

$$
\begin{aligned}
& \alpha \beta=\phi \\
& \alpha+\beta=1+\kappa+\phi
\end{aligned}
$$

QSSA assumes that

Using the QSSA we can develop more simple rate equations which may be integrated to produce approximate expressions for the pertinent concentration profiles as a function of time.
The QSSA will only hold provided that:

- the concentration of intermediate is small and effectively constant, and so :
- the net rate of change in intermediate concentration wrt time can be set equal to zero.

$$
\begin{aligned}
\frac{d w_{s s}}{d \tau} & \cong \phi v_{s s}=\frac{\phi}{\kappa+\phi} \exp \left[-\left(\frac{\phi}{\kappa+\phi}\right) \tau\right] \\
w_{s s} & \cong \frac{\phi}{\kappa+\phi} \int_{0}^{\tau} \exp \left[-\left(\frac{\phi}{\kappa+\phi}\right) \tau\right] d \tau \\
& =1-\exp \left[-\left(\frac{\phi}{\kappa+\phi}\right) \tau\right]
\end{aligned}
$$

$$
\mathrm{A} \underset{\mathrm{k}_{-1}}{\stackrel{\mathrm{k}_{1}}{\sim}} \mathrm{X} \xrightarrow{\mathrm{k}_{2}} \mathrm{P}
$$

Concentration versus log time curves for reactant A, intermediate X and product P when full set of coupled rate equations are solved without any approximation.
$k_{-1}>k_{1}, k_{2}>k_{1}$ and $k_{-1}=k_{2}=50$.
The concentration of intermediate X is very small and approximately constant throughout the time course of the experiment.

Concentration versus log time curves for reactant A, intermediate X, and product P when the rate equations are solved using the QSSA. Values used for the rate constants are the same as those used above. QSSA reproduces the concentration profiles well and is valid.

QSSA will hold when concentration of intermediate is small and constant. Hence the rate constants for getting rid of the intermediate (k_{-1} and k_{2}) must be much larger than that for intermediate generation $\left(\mathrm{k}_{1}\right)$.

Concentration versus log time curves for reactant A, intermediate X and product P when the Coupled rate equations are solved using the quasi steady state approximation. The same values for the rate constants were adopted as above.
The QSSA is not good in predicting how the intermediate concentration varies with time, and so it does not apply under the condition where the concentration of intermediate will be high and the intermediate is long lived.

$$
\mathrm{A} \underset{\mathrm{k}_{-1}}{\underset{\mathrm{k}}{ }} \stackrel{\mathrm{k}_{1}}{\mathrm{~K}_{2}} \xrightarrow{\mathrm{k}^{2}} \mathrm{P}
$$

Concentration versus log time curves for reactant A, intermediate X and product P when full set of coupled rate equations are solved without any approximation.
$\mathrm{k}_{-1} \ll \mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{1}$ and $\mathrm{k}_{-1}=\mathrm{k}_{2}=0.1$
The concentration of intermediate is high and it is present throughout much of the duration of the experiment.

Macromolecule Formation : Polymerization.

polymer
poly(vinyl chloride)
vinyl halide $X=C l$, vinyl chloride

Polymerization of vinyl halides occurs via a chain growth addition polymerization mechanism.

3 step process :

- initiation
- propagation
- termination

Polymer = large molar mass molecule (Macromolecule).

Chain initiation : highly reactive transient molecules or active centers (such as free radicals formed.
Chain propagation : addition of monomer molecules to active chain end accompanied by regeneration of terminal active site.
Chain termination : reaction in which active chain centers are destroyed.
We focus on radical addition polymerization. Kinetics of polymerization quantified via QSSA .

Free Radical Addition Polymerization.

Termination

$$
\begin{array}{|ll}
M_{n} \cdot+M_{m} \cdot \xrightarrow{k_{T C}} P_{n+m} & \begin{array}{c}
\text { termination via combination } \\
\text { termination via }
\end{array} \\
M_{n} \cdot+M_{m} \cdot \xrightarrow{k_{T D}} P_{n}+P_{m} & \text { disproportionation }
\end{array}
$$

Free Radical Addition Polymerization. Analysis of the steady state kinetics.

polymerization rate $=$ rate of chain propagation
bimolecular propagation rate constant

$$
R_{P}=r_{P}=k_{P} m x
$$

$$
=k_{P}\left\{\frac{r_{i}}{2 k_{T}}\right\}^{1 / 2} m
$$

$$
x=\sqrt{\frac{r_{i}}{2 k_{T}}}
$$

monomer concentration
Propagating macroradical concentration will be small since they are very reactive so QSSA can be applied.

$$
\begin{aligned}
& \frac{d x}{d t}=r_{x \text { formation }}-r_{x \text { removal }} \cong 0 \\
& r_{x \text { formation }}=r_{x \text { removal }}
\end{aligned}
$$

depends on initiation

mechanism
r_{i} can be left unspecified
depends on initiation

Application of QSSA. Kinetics of enzyme reactions.

Enzymes are very specific biological catalysts.
A catalyst is a substance that increases the rate of a reaction without itself being consumed by the process.

- A catalyst lowers the Gibbs energy of activation ΔG^{\ddagger} by providing a different mechanistic pathway by which the reaction may proceed. This alternative mechanistic path enhances the rate of both the forward and reverse directions of the reaction.
- The catalyst forms an intermediate with the reactants in the initial step of the reaction (a binding reaction), and is released during the product forming step.
- Regardless of the mechanism and reaction energetics a catalyst does not effect ΔH or ΔG of the reactants and products. Hence catalysts increase the rate of approach to equilibrium, but cannot alter the value of the thermodynamic equilibrium constant.

A reactant molecule acted upon by an enzyme is termed a substrate. The region of the enzyme where the substrate reacts is called the active site. Enzyme specificity depends on the geometry of the active site and the spatial constraints imposed on this region by the overall structure of the enzyme molecule.

Space filling models of the two conformations of the enzyme hexokinase. (a) the active site is not occupied. There is a cleft in the protein structure that allows the substrate molecule glucose to access the active site.
(b) the active site is occupied. The protein has closed around the substrate.

Enzyme lock/key mechanism :

natural molecular recognition.

(a)

(b)

Chymotrypsin : A digestive enzyme.

Mechanism of enzyme action.

$\mathrm{E}+\mathrm{S} \stackrel{k_{1}}{\stackrel{k_{-1}}{\rightleftharpoons}} \mathrm{ES} \xrightarrow{k_{\omega}} \mathrm{E}+\mathrm{P}$
$\mathbf{S}+\boldsymbol{\square} \rightarrow \mathbf{C}+$

A Lock-and-key model

Classification of enzymes.

Oxidoreductases	Transfer electrons
Transferases	Transfer functional groups
Hydrolases	Transfer functional groups to water
Lyases	Transfer groups to or from double bonds
Isomerases	Transfer groups within molecules
Ligases	Transfer by joining groups

Michaelis-Menten kinetics.

$K_{M}=$ Michaelis constant $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$
$k_{c}=$ catalytic rate constant (s^{-1})
$\mathbf{c}=$ substrate concentration ($\mathrm{mol} \mathrm{dm}^{-3}$)
$\mathrm{e}_{\Sigma}=$ total enzyme concentration (mol dm ${ }^{-3}$).
$\mathrm{u}=\mathrm{c} / \mathrm{K}_{\mathrm{M}}$ This is an example of a complex rate equation, where the reaction rate varies with reactant concentration in a non linear way.

Micheolis-Menten kinetics of enzyme reactiomsu

Experimental rate equation : $==-\frac{d s}{d t}=\frac{a s_{s}}{b+s} \quad \begin{aligned} & \text { substrate } \\ & \text { concentration }\end{aligned}$

Mechanism :
 $a, b=$ constants $\bigsqcup \begin{aligned} & \text { Proposed mechanisn should } \\ & \text { produce this ratet lav. }\end{aligned}$

We analyse a simpler scheme which includes all the essentials.
Rate equations

What forms does the enzyme take?

- free enzyme E
- bound enzyme ES

total initial
enzyme concentration
Usually $e_{\Sigma} \ll s$. Subsequent to mixing one has an initial period during which $x=[E S]$ builds up. We then assume that the equilibrium concentration of ES is rapidly attained and reaches a constant low value during the course of the reaction. This requirement satisfies the QSSA.
QSSA

$$
\frac{d x}{d t}=\left\{k_{1} s+k_{-1}+k_{2}+k_{-2} p\right\} x_{S S}-k_{1} s e_{\Sigma}-k_{-2} p e_{\Sigma} \cong 0
$$

$$
x_{S S}=\frac{\left(k_{1} s+k_{-2} p\right) e_{\Sigma}}{k_{1} s+k_{-2} p+k_{-1}+k_{2}} \longrightarrow R_{\Sigma}=-\frac{d s}{d t}=\frac{\left\{k_{1} k_{2} s-k_{-1} k_{-2} p\right\} e_{\Sigma}}{k_{1} s+k_{-2} p+k_{-1}+k_{2}}
$$

Let's assume that measurement of the reaction rate occurs during a time period when only a small percentage (1-3\%) of substrate is transformed to product.

$$
\begin{aligned}
& p \cong 0 \\
& S \cong S_{0}
\end{aligned} \quad \text { initial substrat }
$$

$$
R_{\Sigma} \cong R_{\Sigma, 0} \cong \frac{k_{1} k_{2} e_{\Sigma} s_{0}}{k_{-1}+k_{2}+k_{1} s_{0}}=\frac{k_{2} e_{\Sigma} s_{0}}{\frac{k_{-1}+k_{2}}{k_{1}}+s_{0}}
$$

catalytic rate constant

- Non linear least squares fitting to MM equation.
- Suitable linearization of MM equation.

$$
\frac{1}{R_{\Sigma, 0}}=\frac{K_{M}}{k_{C} e_{\Sigma}} \frac{1}{s_{0}}+\frac{1}{k_{C} e_{\Sigma}} \longleftarrow \quad \text { Pineweaver-Burk }
$$

> Michaelis-Menten (MM) equation for steady state enzyme kinetics.

How can we evaluate K_{M} and k_{C} ?

This has the same form as the empirical rate equation observed experimentally.
K_{M} : enzyme/substrate binding
\boldsymbol{k}_{C} : decomposition of enzyme/substrate complex.

> Fundamental kinetic parameters : K_{M} and k_{C}.

$$
1
$$

How do we interpret the MiM equefiom?

$$
R_{\Sigma, 0}=\frac{d p}{d t}=k_{\Sigma} e_{\Sigma}=\frac{k_{C} e_{\Sigma} s_{0}}{K_{M}+s_{0}}
$$

$$
k_{\Sigma}=\frac{k_{C} s_{0}}{K_{M}+s_{0}} \Rightarrow \frac{1}{k_{\Sigma}}=\frac{K_{M}}{k_{C} s_{0}}+\frac{1}{k_{C}}
$$

saturated
composite rate enzyme constant kinetics

We consider two limiting behaviours.

- $s_{0} \ll K_{M}$ unsaturated enzyme kinetics ; not all active sites bound with substrate
- $s_{0} \gg K_{M}$ saturated enzyme kinetics ; all active sites bound with substrate.

Case US

$$
\longrightarrow k_{U}=\frac{k_{C}}{K_{M}}=\frac{k_{1} k_{2}}{k_{-1}+k_{2}}=\frac{\left(k_{1} / k_{-1}\right) k_{2}}{1+\frac{k_{2}}{k_{-1}}}=\frac{K_{1} k_{2}}{1+\theta}
$$

equilibrium constant for ES formation

$$
\begin{aligned}
& K_{1}=\frac{k_{1}}{k_{-1}} \\
& \theta=\frac{k_{2}}{k_{-1}}
\end{aligned}
$$

We consider two sub cases depending on the value of θ.
$\theta \gg 1$ scenario.

$$
\begin{aligned}
& 1+\theta \cong \theta=\frac{k_{2}}{k_{-1}} \\
& k_{U} \cong K_{1} k_{2}\left(\frac{k_{-1}}{k_{2}}\right)=k_{-1} K_{1}=k_{1}
\end{aligned}
$$

When $k_{2} \gg k_{-1}$, ES complex decomposition to form products is faster than ES decomposition back to reactants. The rds will involve the rate of ombination of E and S to form the ES complex. The ES complex will be short lived since it does not accumulate to form products.

$\theta \ll 1$ scenario. Have a fast pre-equilibrium followed by a slow rate determining $\mathrm{E}+\mathrm{S}$

$$
\begin{aligned}
& 1+\theta \cong 1 \\
& k_{U} \cong K_{1} k_{2}
\end{aligned}
$$ to form products.

Cauduysis aut solid suriecesu

Processes Based on Catalysis

Table 16.7 Some Modern Processes Based on Catalysis
Reactants Catalyst Product Use

Homogeneous Propylene, oxidizer			
	Mo(VI) complexes	Propylene oxide	Polyurethane foams; polyesters
Methanol, CO	$\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{I}_{2}\right]^{-}$	Acetic acid	Poly (vinyl acetate) coatings; poly(vinyl alcohol)
Butadiene, HCN	Ni / P compounds	Adiponitrile	Nylons (fibers, plastics)
α-Olefins, CO, H_{2}	Rh/P compounds	Aldehydes	Plasticizers, lubricants
Heterogeneous			
Ethylene, O_{2}	Silver, cesium chloride on alumina	Ethylene oxide	Polyesters, ethylene glycol, lubricants
Propylene, $\mathbf{N H}_{3}, \mathbf{O}_{\mathbf{2}}$	$\begin{aligned} & \text { Bismuth } \\ & \text { molybdates } \end{aligned}$	Acrylonitrile	Plastics, fibers, resins
Ethylene	Organochromium and titanium halides on silica	High-density polyethylene	Molded products

The Metal-Catalyzed Hydrogenation of Ethylene
 $$
\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}(\mathrm{~g})
$$

(3) One H atom bonds to adsorbed $\mathrm{C}_{2} \mathrm{H}_{4}$.

Adsorpifion elf geallolid interfice

Adsorption. Term used to describe the process whereby a molecule (the adsorbate) forms a bond to a solid surface (an adsorbent).
Fractional surface coverage θ
When $\theta=1, N_{S}=N_{\Sigma}$ and an

$$
\theta=\frac{N_{S}}{N_{\Sigma}} \longleftarrow \text { number of sites occupied by adsorbate }
$$ adsorbed monolayer is formed.

The fractional coverage θ depends on pressure of adsorbing gas phase species. This $\theta=\theta(p)$ relationship is called an adsorption isotherm.

Langmuir Adsorption Isotherm.

Simple approach to quantitatively describe an adsorption process at the gas/solid interface.

Assumptions :

- solid surface is homogeneous and contains a number of equivalent sites, each of which is occupied by a single adsorbate molecule
- a dynamic equilibrium exists between gas phase reactant and adsorbed species
- no interactions between adsorbed species
- adsorbed species localised, $\Delta H_{\text {ads }}$ is independent of coverage θ
associative adsorption

K measures affinity
$\longrightarrow \mathrm{A}_{2}(\mathrm{~g})+\mathrm{S} \underset{\mathrm{k}_{\mathrm{D}}}{\stackrel{\mathrm{k}_{\mathrm{A}}}{\rightleftharpoons}} 2 \mathrm{~A}_{\mathrm{ads}}$
surface adsorption site

$$
K=\frac{k_{A}}{k_{D}} \longleftarrow \longleftarrow \begin{aligned}
& \text { of a particular } \\
& \text { molecule for an } \\
& \text { adsorption site. }
\end{aligned}
$$

dissociative adsorption

Rate of adsorption :

$$
\text { At equilibrium }: \mathrm{R}_{\mathrm{A}}=\mathrm{R}_{\mathrm{D}} \longrightarrow k_{A} p(1-\theta)=k_{D} \theta
$$

pressure fractional coverage of vacant sites

Rate of desorption :
$R_{D}=k_{D} \theta \leftarrow$ fractional surface coverage

$$
\frac{1}{\theta}=1+\frac{1}{K p}
$$

Langmuir adsorption isotherm :
associative adsorption.

A similar analysis can be done for dissociative adsorption.

Adsorption rate	$R_{A}=k_{A} p(1-\theta)^{2}$ $R_{D}=k_{D} \theta^{2}$
Desorption	
rate	

Adsorption isotherm
for dissociative
adsorption.
$\theta=\frac{\theta^{2}}{(1-\theta)^{2}}=\frac{k_{A}}{k_{D}} p=K p$

Langmuir Adsorption Isotherm.

Low p limit: Henry Law

monolayer	$1+K p \cong K p$
formed	$\theta \rightarrow 1$

$$
\begin{array}{|l|}
\hline K p \ll 1 \\
1+K p \cong 1 \\
\theta \cong K p \\
\hline
\end{array}
$$

$$
\theta=\frac{K p}{1+K p}
$$

Kinetics of surface reactions.

Assume that gaseous reactant decomposes when it is adsorbed.

We can consider two limits.

High pressures.

Rate independent of Gas pressure p Zero order kinetics.

Adsorption rate very large when p is high. Decomposition step rds.

Low pressures.

Rate depends
linearly on gas Pressure p First order kinetics. Adsorption process is rate determining when p is low.
Decomposition is fast.

Adsorption energeticsu

Adsorption of a gas on a solid is an exothermic process : $\Delta H_{\text {ads }}$ is negative.
Both adsorption and desorption processes follow the Arrhenius equation.

How is $\Delta \mathrm{H}_{\text {ads }}$ measured? entropy of adsorption

$$
\begin{aligned}
& \ln K=-\frac{\Delta H_{a d s}^{0}}{R T}+\frac{\Delta S_{\text {ads }}^{0}}{R} \\
& \left(\frac{\partial \ln K}{\partial T}\right)_{\theta}=\frac{\Delta H_{a d s}^{0}}{R T^{2}}
\end{aligned}
$$

Gibbs energy of adsorption

Langmuir adsorption assumed

$\left(\frac{\partial \ln K}{\partial T}\right)_{\theta}+\left(\frac{\partial \ln p}{\partial T}\right)_{\theta}=0$ $\left(\frac{\partial \ln p}{\partial T}\right)_{\theta}=-\left(\frac{\partial \ln K}{\partial T}\right)_{\theta}$
entalphy of adsorption
constant surface coverage

constant surface coverage
$\left(\frac{\partial \ln p}{\partial T}\right)_{\theta}=-\frac{\Delta H_{a d s}^{0}}{R T^{2}}$
$\left[\ln \left(\frac{p_{1}}{p_{2}}\right)\right]_{\theta}=\frac{\Delta H_{a d s}^{0}}{R}\left\{\frac{1}{T_{1}}-\frac{1}{T_{2}}\right\}$
$\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~T}_{1}$ and T_{2} can be measured so
$\Delta H_{\text {ads }}$ can be determined.

Chemical Kinetics.

Lectures 5-6.
Microscopic theory of chemical reaction kinetics.

Temperature effects in chemical kinetics.

- Chemical reactions are activated processes : they require an energy input in order to occur.
- Many chemical reactions are activated via thermal means.
- The relationship between rate constant k and temperature T is given by the empirical Arrhenius equation.
- The activation energy E_{A} is determined from experiment, by measuring the rate constant k at a number of different temperatures. The Arrhenius equation is used to construct an Arrhenius plot of $\ln k$ versus $1 / T$. The activation energy is determined from the slope of this plot.

$$
\begin{aligned}
& \left\lvert\, k=\underset{A}{A} \exp \left[-\frac{E_{A}}{R T}\right]\right. \\
& \begin{array}{l}
\text { Pre-exponential } \\
\text { factor }
\end{array}
\end{aligned}
$$

$$
E_{A}=-R\left(\frac{d \ln k}{d(1 / T)}\right)=R T^{2}\left(\frac{d \ln k}{d T}\right)
$$

Microscopic theories of chemical reaction kinetics.

- A basic aim is to calculate the rate constant for a chemical reaction from first principles using fundamental physics.
- Any microscopic level theory of chemical reaction kinetics must result in the derivation of an expression for the rate constant that is consistent with the empirical Arrhenius equation.
- A microscopic model should furthermore provide a reasonable interpretation of the pre-exponential factor A and the activation energy E_{A} in the Arrhenius equation.
- We will examine two microscopic models for chemical reactions :
- The collision theory.
- The activated complex theory.
- The main emphasis will be on gas phase bimolecular reactions since reactions in the gas phase are the most simple reaction types.

References for Microscopic Theory of Reaction Rates.

- Collision Theory.
- Atkins, de Paula, Physical Chemistry $7^{\text {th }}$ edition, Chapter 27, Section. 27.1, pp.944951.
- Activated Complex Theory.
- Atkins, de Paula, Physical Chemistry $7^{\text {th }}$ edition, Chapter 27, Section.27.4-27.5, pp. 956-961.

Collision theory of bimolecular gas phase reactions.

- We focus attention on gas phase reactions and assume that chemical reactivity is due to collisions between molecules.
- The theoretical approach is based on the kinetic theory of gases.
- Molecules are assumed to be hard structureless spheres. Hence the model neglects the discrete chemical structure of an individual molecule. This assumption is unrealistic.
- We also assume that no interaction between molecules until contact.
- Molecular spheres maintain size and shape on collision. Hence the centres cannot come closer than a distance δ given by the sum of the molecular radii.
- The reaction rate will depend on two factors :
- the number of collisions per unit time (the collision frequency)
- the fraction of collisions having an energy greater than a certain threshold energy E*.

Simple collision theory : quantitative aspects.

Two basic requirements dictate a collision event.

- One must have an A, B encounter over a sufficiently short distance to allow reaction to occur.
- Colliding molecules must have sufficient energy of the correct type to overcome the energy barrier for reaction. A threshold energy E^{*} is required.

Two basic quantities are evaluated using the Kinetic Theory of gases : the collision frequency and the fraction of collisions that activate molecules for reaction.
To evaluate the collision frequency we need a mathematical way to define whether or not a collision occurs.

Collision choss section and collision diameter

The collision cross section σ defines when a collision occurs.

$$
\sigma=\pi \delta^{2}=\pi\left(r_{A}+r_{B}\right)^{2}
$$

Effective collision diameter

$$
\delta=r_{A}+r_{B}
$$

The collision cross section for two molecules can be regarded to be the area within which the center of the projectile molecule A must enter around the target molecule B in order for a collision to occur.

Hiltor miss: ihe impact parameteri.

Cross sectional Area of disc

Collision impossible $b>\delta$

Maxwell-Boltzmann velocity

Distribution function

$$
F(v)=4 \pi v^{2}\left\{\begin{array}{c}
m \\
2 \pi k_{B} T
\end{array}\right\}^{3 / 2}
$$

Gas molecules exhibit a spread or distribution of speeds.

- The velocity distribution curve has a very characteristic shape.
- A small fraction of molecules move with very low speeds, a small fraction move with very high speeds, and the vast majority of molecules move at intermediate speeds.
- The bell shaped curve is called a Gaussian curve and the molecular speeds in an ideal gas sample are Gaussian distributed.
- The shape of the Gaussian distribution curve changes as the temperature is raised.
- The maximum of the curve shifts to higher speeds with increasing temperature, and the curve becomes broader as the temperature increases.
- A greater proportion of the gas molecules have high speeds at high temperature than at low temperature.
High
temperature

Speed

v

The collision frequency is computed via the kinetic Theory of gases.
We define a collision number (units: $\mathrm{m}^{-3} \mathrm{~s}^{-1}$) Z_{AB}.

Mean relative velocity evaluated via kinetic theory.
Average velocity of a gas molecule
$\langle v\rangle=\int_{0}^{\infty} v F(v) d v$
$F(v)=4 \pi v^{2}\left\{\frac{m}{2 \pi k_{B} T}\right\}^{3 / 2} \exp \left[-\frac{m v^{2}}{2 k_{B} T}\right]$

Maxwell-Boltzmann velocity Distribution function

MB distribution of velocities enables us to statistically estimate the spread of molecular velocities in a gas

Some maths !

$\langle v\rangle=\sqrt{\frac{8 k_{B} T}{\pi m}} \quad \begin{aligned} & \text { Mass of } \\ & \text { molecule }\end{aligned}$

We now relate the average velocity to the mean relative velocity.
If A and B are different molecules then

Collision frequency factor

The number of collisions per unit time between a single A molecule and other A molecules

Total number of collisions between like molecules

We divide by 2 to ensure That each A,A encounter Is not counted twice.

Temperature and the Distribution of Collision Energies

Molecular collision is effective only if translational energy of reactants is greater than some threshold value.

$$
H\left(\epsilon^{*}>\varepsilon^{*}\right)=e x\left[-\frac{\varepsilon^{*}}{k_{B}^{T}}\right]
$$

Activation Energy

Table 16.5 The Effect of $E_{\text {a }}$ and T on the Fraction (f) of Collisions with Sufficient Energy to Allow Reaction

$E_{\mathrm{a}}(\mathrm{kJ} / \mathrm{mol})$	$f($ at $T=298 \mathrm{~K})$
50	1.70×10^{-9}
75	7.03×10^{-14}
100	2.90×10^{-18}
T	$f\left(\right.$ at $\left.E_{\mathrm{a}}=50 \mathrm{~kJ} / \mathrm{mol}\right)$
$25^{\circ} \mathrm{C}(298 \mathrm{~K})$	1.70×10^{-9}
$35^{\circ} \mathrm{C}(308 \mathrm{~K})$	3.29×10^{-9}
$45^{\circ} \mathrm{C}(318 \mathrm{~K})$	6.12×10^{-9}

- The simple collision theory expression for the reaction rate R between unlike molecules

$$
R=-\frac{d n_{A}}{d t}=Z n_{A} n_{B} \exp \left[-\frac{\varepsilon^{*}}{k_{B} T}\right]
$$

$$
Z=\sigma\left\{\frac{8 k_{B} T}{\pi \mu}\right\}^{1 / 2}
$$

- The more usual rate expression for a bimolecular reaction between A and B is

$$
R=-\frac{d a}{d t}=k a b
$$

- We introduce molar variables

- The bimolecular rate constant for
- Similarly for bimolecular collisions collisions between unlike molecules is given by between like molecules

Both of these expressions are similar to the Arrhenius equation.

$$
\begin{array}{rl|l|l|}
k= & 2 N_{A} \sigma\left\{\frac{k_{B} T}{\pi m}\right\}^{1 / 2} \exp \left[-\frac{E^{*}}{R T}\right] & \begin{array}{l}
\text { Collision } \\
\text { Frequency } \\
\text { factor } \\
\\
= \\
z_{A A} \exp \left[-\frac{E^{*}}{R T}\right]
\end{array} & k=N_{A} \sigma\left\{\frac{8 k_{B} T}{\pi \mu}\right\}^{1 / 2} \exp \left[-\frac{E^{*}}{R T}\right] \\
& =z_{A B} \exp \left[-\frac{E^{*}}{R T}\right]
\end{array}
$$

We compare the results of SCT with the empirical Arrhenius eqn. In order to obtain an interpretation of the activation energy and Pre-exponential factor.

- SCT predicts that the pre-exponential

$$
k=A_{o b s} \exp \left[-\frac{E_{A}}{R T}\right]
$$

A,B encounters

$$
\begin{aligned}
k & =2 N_{A} \sigma\left\{\frac{k_{B} T}{\pi m}\right\}^{1 / 2} \exp \left[-\frac{E^{*}}{R T}\right] \\
& =z_{A A} \exp \left[-\frac{E^{*}}{R T}\right]
\end{aligned}
$$

A,A encounters

 factor should depend on temperature.- The threshold energy and the activation energy can also be compared.
- Activation energy exhibits a weak T dependence.

Arrhenius

$$
E_{A}=E^{*}+\frac{R T}{2}
$$

$$
E_{A} \cong E^{*}
$$

SCT : a summary.

- The major problem with SCT is that the threshold energy E^{\star} is very difficult to evaluate from first principles.
- The predictions of the collision theory can be critically evaluated by comparing the experimental pre-exponential factor with that computed using SCT.
- We define the steric factor P as the ratio between the experimental and calculated A factors.

$$
P=A_{\text {exp }} / A_{\text {calc }}
$$

- We can incorporate P into the SCT expression for the rate constant.
- For many gas phase reactions P is considerably less than unity.
- Typically SCT will predict that $A_{\text {calc }}$ will be in the region $10^{10}-10^{11} \mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$ regardless of

$$
\begin{aligned}
& k=P z_{A B} \exp \left[-\frac{E^{*}}{R T}\right] \\
& k=P z_{A A} \exp \left[-\frac{E^{*}}{R T}\right]
\end{aligned}
$$ the chemical nature of the reactants and products.

- What has gone wrong? The SCT assumption of hard sphere collision neglects the important fact that molecules possess an internal structure. It also neglects the fact that the relative orientation of the colliding molecules will be important in determining whether a collision will lead to reaction.
- We need a better theory that takes molecular structure into account. The activated complex theory does just that .

Summary of SCT.

A, B encounters

$$
\begin{aligned}
k & =N_{A} \sigma\left\{\frac{8 k_{B} T}{\pi \mu}\right\}^{1 / 2} \exp \left[-\frac{E^{*}}{R T}\right] \\
& =z_{A B} \exp \left[-\frac{E^{*}}{R T}\right]
\end{aligned}
$$

A, A encounters

$$
\begin{aligned}
k & =2 N_{A} \sigma\left\{\frac{k_{B} T}{\pi m}\right\}^{1 / 2} \exp \left[-\frac{E^{*}}{R T}\right] \\
& =z_{A A} \exp \left[-\frac{E^{*}}{R T}\right]
\end{aligned}
$$

$$
\begin{aligned}
& k=P z_{A B} \exp \left[-\frac{E^{*}}{R T}\right] \\
& k=P z_{A A} \exp \left[-\frac{E^{*}}{R T}\right]
\end{aligned}
$$

Steric factor

(Orientation requirement)
Weaknesses:

- No way to compute P from molecular parameters
- No way to compute E* from first principles. Theory not quantitative or predictive. Strengths:
-Qualitatively consistent with observation (Arrhenius equation).
- Provides plausible connection between microscopic molecular properties and macroscopic reaction rates.
- Provides useful guide to upper limits for rate constant k.

Potential Enery Suffeciorachimical reaction

$$
A+B C \rightarrow[A B C]^{*} \rightarrow A B+C
$$

Contour diaysan inustraing veaction
coordinates

Activated complex Theory (fcit)

 Off cmicall reection kineticsuProgress of a chemical reaction can be expressed in terms of a plot of energy versus reaction co-ordinate.
The reaction coordinate may be described in terms of changes in particular bond lengths since these will vary as the reaction progresses.

Reaction Energy Diagram

Reaction progess

Reaction coordinate

1
Activated Complex or Transition State

nativelid Complexes,

The transition state or activated complex is a high energy species of fleeting (ca fs lifetime, $1 \mathrm{fs}=10^{-15} \mathrm{~s}$) existence. Its structure has features both of the reactants and the products. 1999 Nobel Prize in Chemistry awarded to Ahmed Zewail from Caltech for his studies of transition states of chemical reactions by femtosecond spectroscopy using laser technology.
Experimental study of very short timescales is called femtochemistry.

Transition states can have different geometries.

A Reaction progress

B Reaction progress

C Reaction progress

Qumentiative ACTR

Basic assumption : activated complex X^{*} is treated as a thermodynamic quantity in thermodynamic equilibrium with the reactants.
frequency of decomposition reactant/transition state transformation.
\downarrow
decomposition and concentration of activated
 the activated complex.
$\mathrm{m}=1$: unimolecular reaction
$\mathrm{m}=2$: bimolecular reaction .
This fundamental expression must now be evaluated.

For an ideal gas or for reactions in solution :
thermodynamic equilibrium constant

We assume that the TS decomposes with a frequency given by:

$$
v^{*}=\frac{k_{B} T}{h}
$$

$$
\begin{array}{r}
\begin{array}{l}
\text { Change in \# moles } \\
\text { for reactant /TS } \\
\text { transformation }
\end{array} \\
k=v^{*} K_{C}{ }^{*}=v^{*}\left(\frac{K^{*}}{c^{0}}\right)
\end{array}
$$

Not all transition states go and form products.
$\mathrm{h}=$ Planck's constant $=6.63 \times 10^{-34} \mathrm{Js}$ $\mathrm{k}_{\mathrm{B}}=$ Boltzmann constant $=1.38 \times 10^{-23} \mathrm{JK}^{-1}$

For $\mathrm{T}=298 \mathrm{~K}$

$$
v^{*} \cong 6 \times 10^{12} s^{-1}
$$

This is of the correct order of magnitude for a molecular vibration frequency.

$$
=\kappa\left\{\frac{k_{B} T}{h c^{0}}\right\} K^{*}
$$

$$
\kappa=\text { transmission coefficient }
$$

$$
0<\kappa<1
$$

We relate K^{*} to the Gibbs energy of activation ΔG^{*}

$$
\Delta G^{0^{*}}=-R T \ln K^{*}
$$

$$
k=\kappa\left\{\frac{k_{B} T}{h c^{0}}\right\} \exp \left[-\frac{\Delta G^{0^{*}}}{R T}\right]
$$

Eyring equation : fundamental $A C T$ result.

$\Delta G^{0^{*}}=\Delta H^{0^{*}}-T \Delta S^{0^{*}}$
enthalpy of entropy of activation activation

We obtain a useful interpretation for activation energy and pre-exponential factor.

Rellating Arrfienius parameters amd

ACT

$$
E_{A}=R T^{2}\left(\frac{d \ln k}{d T}\right)
$$

condensed phases

ideal gases
reaction
molecularity

$$
k=\kappa\left\{\frac{k_{B} T}{h c^{0}}\right\} \exp \left[\frac{\Delta S^{0^{*}}}{R}\right] \exp \left[-\frac{\Delta H^{0 *}}{R T}\right]
$$

pre-exponential factor $A-$

$$
k=\kappa\left(\frac{k_{B} T}{h c^{0}}\right) \exp \left[2+\frac{\Delta S^{0 *}}{R}\right] \exp \left[-\frac{E_{A}}{R T}\right]
$$

bimolecular gas phase reaction
$m=1$, condensed phases, unimolecular gas phase reactions
$m=2$, bimolecular gas phase reactions

ACT interpretation of the Amplenlius equations

$$
k_{m}=\kappa\left(\frac{k_{B} T}{h\left(c^{0}\right)^{n-1}}\right) \exp \left[m+\frac{\Delta S^{0 *}}{R}\right] \exp \left[-\frac{E_{A}}{R T}\right] \quad m=\text { molecularity }
$$

$\Delta S^{0 *}$ explained in
terms of changes in translational, rotational and vibrational degrees of freedom on going from reactants to TS.

$$
S=-\frac{E_{A}}{R}
$$

$$
\eta
$$

pre-exponential factor related to entropy of activation (difference in entropy between reactants and activated complex

$$
A=\kappa\left(\frac{k_{B} T}{h\left(c^{0}\right)^{m-1}}\right) \exp \left[m+\frac{\Delta S^{0 *}}{R}\right] \uparrow \ln k
$$

$$
A=P Z=\kappa\left(\frac{k_{B} T}{h\left(c^{0}\right)^{m-1}}\right) \exp \left[m+\frac{\Delta S^{0 *}}{R}\right] \quad \begin{array}{ll}
P \cong 1 & \Delta S^{0 *} \cong 0 \\
P<1 & \Delta S^{0 *} \text { negative } \longleftarrow
\end{array}
$$

TS more ordered than reactants
collision theory

