CHEMICAL KINETICS: 1

- Rate
- Order
- Rate law
- Rate constant
- Half-life
- Temperature Dependence

Chemical Reactions Kinetics

- Chemical kinetics is the study of time dependence of the change in the concentration of reactants and products.
- Chemical Reaction involve the forming and breaking of chemical bonds
- Reactant Molecules $\left(\mathrm{H}_{2}, \mathrm{I}_{2}\right)$ approach one another and collide and interact with appropriate energy and orientation. Bonds are stretched, broken, and formed and finally product molecules (HI) move away from one another.
- How can we describe the rate at which such a chemical transformation takes place?

Chemical Reaction Kinetics

$$
\underset{\text { Reactants }}{\mathrm{H}_{2}(\mathrm{~g})}+\underset{\text { products }}{\mathrm{I}_{2}(g)} \underset{\underset{\text { plat }}{2 \mathrm{HI}(g)}}{\text { (g) }}
$$

- Thermodynamics tell us all about the energetic feasibility of a reaction: we measure the Gibbs energy ΔG for the chemical reaction.
- Thermodynamics does not tell us how quickly the reaction will proceed: it does not provide kinetic information.

Basic Ideas in Reaction Kinetics

- Chemical reaction kinetics deals with the rate of velocity of chemical reactions.
- We wish to quantify:
- The velocity at which reactants are transformed to products
- The detailed molecular pathway by which a reaction proceed (the reaction mechanism)

Basic Ideas in Reaction Kinetics

- Chemical reactions are said to be activated processes: energy (usually thermal (heat) energy) must be introduced into the system so that chemical transformation occur more rapidly when temperature of the system is increased.
- In simple terms an activation energy barrier must be overcome before reactants can be transformed into products.

Rate of reaction

- What do we mean by term reaction rate?
- The term rate implies that something changes with respect to something else.
- How many reaction rates can be determined?
- The reaction rate is quantified in terms of the change in concentration of a reactant or product species with respect to time.
- This requires an experimental measurement of the manner in which the concentration changes with time of reaction. We can monitor either the concentration change directly, or monitor changes in some physical quantity which is directly proportional to the concentration.

Rate of reaction

- The reactant concentration decreases with increasing time, and the product concentration increases with increasing time.
- The rate of a chemical reaction depends on the concentration of each of the participating reactant species.
- The manner in which the rate changes in magnitude with changes in the magnitude of each of participating reactants is termed the reaction order.

Rate of reaction

- Symbol: R, v

- Stoichiometric equation: $\mathrm{m} \mathbf{A}+\mathrm{n} \mathbf{B} \rightleftarrows \mathrm{p} \mathbf{X}+\mathrm{q} \mathbf{Y}$
- Rate:

$$
R=-\frac{1}{m} \frac{d A}{d t}=-\frac{1}{n} \frac{d b}{d t}=+\frac{1}{p} \frac{d X}{d t}=+\frac{1}{q} \frac{d Y}{d t}
$$

- Units of k, rate constant
not reaction coeff.

Rate Law	Order	Units of \mathbf{k}
$R=k$	0	
$R=k[A]$	1	
$R=k[A]^{2}$	2	
$R=[A][B]$	1 in $[\mathrm{A}],[\mathrm{B}]$ 2 overall	
$R=k[A]^{m}[B]^{n}$		
(concentration $)^{1-m-n}$		
time	$1 / 2$	

Factors That Affect Reaction Rates

- Concentration of Reactants
- As the concentration of reactants increases, so does the likelihood that reactant molecules will collide.
- Temperature

- At higher temperatures, reactant molecules have more kinetic energy, move faster, and collide more often and with greater energy.
- Catalysts
- Speed rxn by changing mechanism.

Rate Law

- How does the rate depend upon []s?
- Find out by experiment
- The Rate Law equation

$$
\mathrm{R}=\mathrm{k}[\mathrm{~A}]^{\alpha}[\mathrm{B}]^{\beta} \ldots \quad \text { (for many reactions) }
$$

- order, $n=\alpha+\beta+\ldots$ (dimensionless)
- rate constant, k (units depend on rxn Order)
- Rate $=k \quad$ when each [conc] = unity

Rate laws can be complicated

1) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{g}) \quad R=k\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]$
2) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{g}) R=\frac{2 k^{\prime}\left[\mathrm{H}_{2}\right]\left[\mathrm{Br}_{2}\right]^{1 / 2}}{1+k^{\prime \prime}[\mathrm{HBr}]\left[\mathrm{Br}_{2}\right]^{-1}}$

These rate laws suggest that these two reactions occur via different mechanisms (sets of individual steps).

The first may be a elementary reaction (one step) whereas the latter is certainly a multistep process.

We will soon explore how to obtain complicated rate laws from suggested mechanisms.

Finding rate laws experimentally

There are two common methods for determining rate laws:

Method of isolation

Set up reaction so one reactant is in excess. Any change in rate will be due to changes in other reactant. Repeat for other reactant.

$$
R=k^{\prime}[B]^{n} \quad \text { where } \quad k^{\prime}=k[A]^{m}
$$

Method of initial rates

Measure concentration change as a function of time, $\sim v(t)$, for a series of experimental conditions. (Conditions must include sets where the reactant A has the same initial concentration but B changes and vice versa).

Integration of rate laws

- Order of reaction

For a reaction $\mathrm{aA} \rightarrow$ products
the rate law is:

$$
\begin{aligned}
R & =-\frac{1}{a} \frac{d[A]}{d t}=k[A]^{n} \\
& \Rightarrow \frac{d[A]}{d t}=-a k[A]^{n}
\end{aligned}
$$

defining $k_{A}=a k$

$$
R=\frac{d[A]}{d t}=-k_{A}[A]^{n}
$$

or just written as :
$R=\frac{d[A]}{d t}=-k[A]^{n}$
rate of change in the concentration of A

First-order reaction

$$
\begin{gathered}
R=\frac{d[A]}{d t}=-k[A]^{1} \\
\frac{d[A]}{[A]}=-k d t \\
\int_{[A]_{0}}^{[A]_{0}} \frac{d[A]}{[A]}=-k \int_{0}^{t} d t \\
\ln \left([A]_{t}-[A]_{0}\right)=-k\left(t-t_{0}\right)
\end{gathered}
$$

First-order reaction

$$
\begin{gathered}
\ln [A]_{t}-\ln [A]_{0}=-k\left(t-t_{0}\right) \\
\ln [A]_{t}=\ln [A]_{0}-k t
\end{gathered}
$$

A plot of $\ln [A]$ versus t gives a straight line of slope $-k_{A}$ if $r=k[A]^{1}$

First-order reaction

$$
\ln [A]_{t}-\ln [A]_{0}=-k\left(t-t_{0}\right)
$$

$$
\ln \left(\frac{[A]_{t}}{[A]_{0}}\right)=-k t
$$

$$
\frac{[A]_{t}}{11}=e^{-k t}
$$

$$
[A]_{0}
$$

$$
[A]_{t}=[A]_{0} e^{-k t} \begin{gathered}
\text { Eirstorder reactions } \\
\text { decay exponentially. }
\end{gathered}
$$

First-order reaction: example

Ozone decays via first order kinetics
$\mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+\mathrm{O}(\mathrm{g}) \quad k=1.078 \times 10^{-5} \mathrm{~s}^{-1}$ at 300 K
$\left[\mathrm{O}_{3}\right]_{t}=\left[\mathrm{O}_{3}\right]_{0} e^{-k t}$

$$
\ln \frac{\left[\mathrm{O}_{3}\right]_{t}}{\left[\mathrm{O}_{3}\right]_{0}}=-k t
$$

What is slope?

What happens as k increases?

$$
[A]_{t}=[A]_{0} e^{-k t}
$$

$$
\begin{aligned}
& \mathrm{k}=0.0125 \mathrm{~s}^{-1} \\
& \mathrm{k}=0.0250 \mathrm{~s}^{-1} \\
& \mathrm{k}=0.0500 \mathrm{~s}^{-1} \\
& \mathrm{k}=0.1000 \mathrm{~s}^{-1}
\end{aligned}
$$

First-order reaction: example

Consider the process in which methyl isonitrile is converted to acetonitrile.

Methyl isonitrile

$\mathrm{CH}_{3} \mathrm{NC}$

How do we know this is a first order rxn?

First-order reaction: example

$\mathrm{CH}_{3} \mathrm{NC}$

This data was collected for this reaction at $198.9^{\circ} \mathrm{C}$.

Does
rate $=\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{NC}\right]$ for all time intervals?
$\mathrm{CH}_{3} \mathrm{CN}$

First-order reaction

$$
[A]_{t}=[A]_{0} e^{-k t}
$$

$$
\ln [A]_{t}=-k t+\ln [A]_{0}
$$

- When $\ln P$ is plotted as a function of time, a straight line results.
- The process is first-order.
$-k$ is the negative slope: $5.1 \times 10^{-5} \mathrm{~s}^{-1}$.

Half life: first-order reaction

- The time taken for [A] to drop to half its original value is called the reaction's half-life, $\mathrm{t}_{1 / 2}$. Setting [A] $=1 / 2[\mathrm{~A}]_{0}$ and $\mathrm{t}=\mathrm{t}_{1 / 2}$ in:

$$
\begin{aligned}
\ln \left(\frac{[A]_{t}}{[A]_{0}}\right) & =-k t \\
\ln \left(\frac{\frac{1}{2}[A]_{0}}{[A]_{0}}\right) & =-k t_{1 / 2}
\end{aligned}
$$

Half life: first-order reaction

$$
\begin{aligned}
& \ln \left(\frac{1}{2}\right)=-k t_{1 / 2}=-0.693 \\
\Rightarrow & t_{1 / 2}=\frac{0.693}{k} \quad \text { or } k=\frac{0.693}{t_{1 / 2}}
\end{aligned}
$$

When is a reaction over?

- $[\mathrm{A}]=[\mathrm{A}]_{0} \mathrm{e}^{-\mathrm{kt}}$

Technically $[\mathrm{A}]=0$ only after infinite time

Second-order reaction

Similarly, integrating the rate law for a process that is second-order in reactant A:

$$
\begin{gathered}
R=\frac{d[A]}{d t}=-k[A]^{2} \\
\frac{d[A]}{[A]^{2}}=-k d t \\
\int_{[A]_{0}}^{[A]_{t}} \frac{d[A]}{[A]^{2}}=-k \int_{0}^{t} d t
\end{gathered}
$$

Second-order reaction

$$
\begin{gathered}
-\frac{1}{[A]_{t}}-\left(-\frac{1}{[A]_{0}}\right)=-k\left(t-t_{0}\right) \\
\frac{1}{[A]_{t}}-\frac{1}{[A]_{0}}=k t
\end{gathered}
$$

also in the form $\quad y=m x+b$
A plot of $1 /[A]$ versus \dagger gives a straight line of slope k_{A} if $r=k_{A}[A]^{2}$

Determining rxn order

The decomposition of NO_{2} at $300^{\circ} \mathrm{C}$ is described by the equation

$$
\mathrm{NO}_{2}(g)
$$

$\mathrm{NO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$
and yields these data:

Time (s)	$\left[\mathrm{NO}_{2}\right], M$
0.0	0.01000
50.0	0.00787
100.0	0.00649
200.0	0.00481
300.0	0.00380

Determining rxn order

Graphing $\ln \left[\mathrm{NO}_{2}\right]$ vs. t yields:

- The plot is not a straight line, so the process is not firstorder in [A].

Time (s)	$\left[\mathrm{NO}_{2}\right], M$	$\ln \left[\mathrm{NO}_{2}\right]$
0.0	0.01000	-4.610
50.0	0.00787	-4.845
100.0	0.00649	-5.038
200.0	0.00481	-5.337
300.0	0.00380	-5.573

Does not fit:

$$
\ln [A]_{t}=-k t+\ln [A]_{0}
$$

Second-Order Processes

A graph of $1 /\left[\mathrm{NO}_{2}\right]$ vs. t gives this plot.

$$
\frac{1}{[A]_{t}}=k t+\frac{1}{[A]_{0}}
$$

Time (s)	$\left[\mathrm{NO}_{2}\right], M$	$1 /\left[\mathrm{NO}_{2}\right]$
0.0	0.01000	100
50.0	0.00787	127
100.0	0.00649	154
200.0	0.00481	208
300.0	0.00380	263

- This is a straight line. Therefore, the process is secondorder in $\left[\mathrm{NO}_{2}\right]$.

Half-Life

- Half-life is defined as the time required for one-half of a reactant to react.
- Because [A] at $t_{1 / 2}$ is one-half of the original [A],

$$
[\mathrm{A}]_{t}=0.5[\mathrm{~A}]_{0} .
$$

Half life: second-order reaction

For a second-order process, set $[\mathrm{A}]_{\mathrm{t}}=0.5[\mathrm{~A}]_{0}$ in 2 nd order equation.

$$
\begin{gathered}
\frac{1}{[A]_{t}}-\frac{1}{[A]_{0}}=k t \\
\frac{2}{[A]_{o}}-\frac{1}{[A]_{0}}=k t_{1 / 2} \\
\frac{1}{[A]_{0}}=k t_{1 / 2} \text { or } \frac{1}{k[A]_{0}}=t_{1 / 2}
\end{gathered}
$$

Outline: Kinetics

	First order	Second order	Second order (Bimoleculer)
Rate Laws	rate $=-k[A]$	rate $=-k[A]^{2}$	rate $=-k[A][B]$
Integrated Rate Laws	$\ln \frac{[A]_{t}}{[A]_{0}}=-k t$	$\frac{1}{[A]_{t}}=k t+\frac{1}{[A]_{0}}$	complicated (disclussed later)
Half-liife	$\frac{0.693}{k}=t_{\frac{1}{2}}$	$\frac{1}{k[A]_{0}}=t_{\frac{1}{2}}$	Complicated (discussed later)

Problems:

- Define/derive Integrated Rate Laws and Half-life of $\boldsymbol{3}^{\text {rd }}$-order and $\boldsymbol{n}^{\text {th }}$-order reactions whose rate laws are given below:

$$
R=k[B]^{3} \quad \text { where } \quad R=k[A]^{n}
$$

Outline: Kinetics

Third order	$\mathrm{n}^{\text {th }}$-order	
Rate Laws	$\boldsymbol{R}=\boldsymbol{k}[\boldsymbol{A}]^{3}$	$\boldsymbol{R}=\boldsymbol{k}[\boldsymbol{A}]^{n}$
Integrated Rate Laws	$\frac{1}{2}\left(\frac{1}{[A]_{t}{ }^{2}}-\frac{1}{[A]_{0}{ }^{2}}\right)=k t$	$\frac{1}{n-1}\left(\frac{1}{[A]_{t}^{(n-1)}}-\frac{1}{[A]_{0}^{(n-1)}}\right)=k t$
Half-life	$\frac{3}{(2) k[A]_{o}{ }^{2}}=t_{1 / 2}$	$\frac{2^{n-1}-1}{(n-1) k[A]_{o}^{n-1}}=t_{1 / 2}$

Other order reactions...

Second order reaction:	$2 A \rightarrow$ products	$A+B \rightarrow$ products
Second order rate:	$R=-\frac{1}{2} \frac{d[A]}{d t}=k[A]^{2}$	$R=-\frac{d[A]}{d t}=k[A][B]$
Integrated rate law:	$\frac{1}{[A]_{t}}=\frac{1}{[A]_{0}}+2 k t$	$\frac{1}{\left([A]_{0}-[B]_{0}\right)} \ln \left(\frac{[B]_{0}[A]_{t}}{[A]_{0}[B]_{t}}\right)=k t$

Zero order reaction:

Zero order rate:
$A \rightarrow$ products

$$
R=-\frac{d[A]}{d t}=k
$$

Integrated rate law:

$$
[A]_{t}=[A]_{0}-k t
$$

Temperature Dependence of k

Svante Arrhenius

Winner of the $3^{\text {rd }}$ Nobel Prize in Chemistry

The rate constant can vary in different ways with T .

(a)

(b)

(c)

Arrhenius Parameters

Integrated forms of Arrhenius equation:
Activated (or transition) state

$$
2 \mathrm{HI}(\mathrm{~g}) \rightarrow \mathrm{I}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

Temperature dependence of k

Svante Arrhenius Winner of the $3^{\text {rd }}$ Nobel Prize in Chemistry

The rate constant can vary in different ways with T .

(a)

Temperature (b)

(c)

- $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{HCl}$
- Rule of thumb: rate \approx doubles for a 10 K rise

No	T / K^{-1}	k / s^{-1}
1	700	6.1×10^{-5}
2	727	30×10^{-5}
3	765	242×10^{-5}

Rate constant expression

$$
\begin{gathered}
k=A e^{-E_{a} / R T} \\
k=\left(\frac{k_{1}}{k_{2}}=\frac{A}{A} \exp \left(\frac{\left(-E_{A}\right)}{\frac{R T_{1}}{\left(-E_{A}\right)}} \frac{\ln \left(\frac{1}{2}\right)}{2}\right)=\left(\frac{-E_{A}}{8.314}\right)\left(\frac{1}{293.15}-\frac{1}{303.15}\right)\right. \\
\frac{k_{1}}{k_{2}}=\exp \left(\frac{-E_{A}}{R}\right)\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) \\
\ln \left(\frac{k_{1}}{k_{2}}\right)=\left(\frac{-E_{A}}{R}\right)\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
\end{gathered}
$$

Relating E_{a} to thermodynamics!

Necessary Pieces...
Arrhenius Equation: $\ln k=\ln A-\frac{E_{a}}{R T}$
Differentiate wrt T: $\quad \frac{d \ln k}{d T}=\frac{E_{a}}{R T^{2}} \quad$ or $\quad E_{a}=R T^{2} \frac{d \ln k}{d T}$

From Eyring Equation: $\quad \frac{d \ln k}{d T}=\frac{1}{T}+\frac{d \ln K_{C}^{\ddagger}}{d T}$
van't Hoff Equation (for K_{c}): $\quad \frac{d \ln K_{C}}{d T}=\frac{\Delta U}{R T^{2}}$
Putting it all together...

$$
E_{a}=R T^{2}\left(\frac{1}{T}+\frac{d \ln K_{c}^{\ddagger}}{d T}\right) \quad \text { or } \quad E_{a}=R T+\Delta U^{\ddagger}
$$

