CHEMICAL KINETICS

- Rate
- Order
- Rate law
- Rate constant
- Half-life
- Molecularity
- Elementary
- Complex
- Temperature dependence,
- Steady-state Approximation

Chemical Reactions Kinetics

- Chemical kinetics is the study of time dependence of the change in the concentration of reactants and products.
- Chemical Reaction involve the forming and breaking of chemical bonds
- Reactant Molecules $\left(\mathrm{H}_{2}, \mathrm{I}_{2}\right)$ approach one another and collide and interact with appropriate energy and orientation. Bonds are stretched, broken, and formed and finally product molecules (HI) move away from one another.
- How can we describe the rate at which such a chemical transformation takes place?

Chemical Reaction Kinetics

$$
\underset{\text { Reactants }}{\mathrm{H}_{2}(\mathrm{~g})}+\underset{\text { products }}{\mathrm{I}_{2}(g)} \underset{\underset{\text { plat }}{2 \mathrm{HI}(g)}}{\text { (g) }}
$$

- Thermodynamics tell us all about the energetic feasibility of a reaction: we measure the Gibbs energy ΔG for the chemical reaction.
- Thermodynamics does not tell us how quickly the reaction will proceed: it does not provide kinetic information.

Basic Ideas in Reaction Kinetics

- Chemical reaction kinetics deals with the rate of velocity of chemical reactions.
- We wish to quantify:
- The velocity at which reactants are transformed to products
- The detailed molecular pathway by which a reaction proceed (the reaction mechanism)

Basic Ideas in Reaction Kinetics

- Chemical reactions are said to be activated processes: energy (usually thermal (heat) energy) must be introduced into the system so that chemical transformation occur more rapidly when temperature of the system is increased.
- In simple terms an activation energy barrier must be overcome before reactants can be transformed into products.

Rate of reaction

- What do we mean by term reaction rate?
- The term rate implies that something changes with respect to something else.
- How many reaction rates can be determined?
- The reaction rate is quantified in terms of the change in concentration of a reactant or product species with respect to time.
- This requires an experimental measurement of the manner in which the concentration changes with time of reaction. We can monitor either the concentration change directly, or monitor changes in some physical quantity which is directly proportional to the concentration.

Rate of reaction

- The reactant concentration decreases with increasing time, and the product concentration increases with increasing time.
- The rate of a chemical reaction depends on the concentration of each of the participating reactant species.
- The manner in which the rate changes in magnitude with changes in the magnitude of each of participating reactants is termed the reaction order.

Rate of reaction

- Symbol: R, v

- Stoichiometric equation: $\mathrm{mA}+\mathrm{n} \mathbf{B} \rightleftarrows \mathrm{p} \mathbf{X}+\mathrm{q} \mathbf{Y}$
- Rate:

$$
R=-\frac{1}{m} \frac{d A}{d t}=-\frac{1}{n} \frac{d b}{d t}=+\frac{1}{p} \frac{d X}{d t}=+\frac{1}{q} \frac{d Y}{d t}
$$

- Units of k, rate constant
not reaction coeff.

Rate Law	Order	Units of \mathbf{k}
$R=k$	0	
$R=k[A]$	1	
$R=k[A]^{2}$	2	
$R=[A][B]$	1 in $[\mathrm{A}],[\mathrm{B}]$ 2 overall	
$R=k[A]^{1 / 2}$	$1 / 2$	

$$
\begin{aligned}
k & =\frac{R}{[A]^{m}[B]^{n}} \\
& =\frac{(\text { concentration })^{1-m-n}}{\text { time }}
\end{aligned}
$$

Factors That Affect Reaction Rates

- Concentration of Reactants
- As the concentration of reactants increases, so does the likelihood that reactant molecules will collide.
- Temperature

- At higher temperatures, reactant molecules have more kinetic energy, move faster, and collide more often and with greater energy.
- Catalysts
- Speed rxn by changing mechanism.

Rate Law

- How does the rate depend upon []s?
- Find out by experiment
- The Rate Law equation

$$
\mathrm{R}=\mathrm{k}[\mathrm{~A}]^{\alpha}[\mathrm{B}]^{\beta} \ldots \quad \text { (for many reactions) }
$$

- order, $n=\alpha+\beta+\ldots$ (dimensionless)
- rate constant, k (units depend on rxn Order)
- Rate $=k \quad$ when each [conc] = unity

Rate laws can be complicated

1) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{g}) \quad R=k\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]$
2) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{g}) R=\frac{2 k^{\prime}\left[\mathrm{H}_{2}\right]\left[\mathrm{Br}_{2}\right]^{1 / 2}}{1+k^{\prime \prime}[\mathrm{HBr}]\left[\mathrm{Br}_{2}\right]^{-1}}$

These rate laws suggest that these two reactions occur via different mechanisms (sets of individual steps).

The first may be a elementary reaction (one step) whereas the latter is certainly a multistep process.

We will soon explore how to obtain complicated rate laws from suggested mechanisms.

Finding rate laws experimentally

There are two common methods for determining rate laws:

Method of isolation

Set up reaction so one reactant is in excess. Any change in rate will be due to changes in other reactant. Repeat for other reactant.

$$
R=k^{\prime}[B]^{n} \quad \text { where } \quad k^{\prime}=k[A]^{m}
$$

Method of initial rates

Measure concentration change as a function of time, $\sim v(t)$, for a series of experimental conditions. (Conditions must include sets where the reactant A has the same initial concentration but B changes and vice versa).

Integration of rate laws

- Order of reaction

For a reaction $\mathrm{aA} \rightarrow$ products
the rate law is:

$$
\begin{aligned}
R & =-\frac{1}{a} \frac{d[A]}{d t}=k[A]^{n} \\
& \Rightarrow \frac{d[A]}{d t}=-a k[A]^{n}
\end{aligned}
$$

defining $k_{A}=a k$

$$
R=\frac{d[A]}{d t}=-k_{A}[A]^{n}
$$

or just written as :
$R=\frac{d[A]}{d t}=-k[A]^{n}$
rate of change in the concentration of A

First-order reaction

$$
\begin{gathered}
R=\frac{d[A]}{d t}=-k[A]^{1} \\
\frac{d[A]}{[A]}=-k d t \\
\int_{[A]_{0}}^{[A]_{0}} \frac{d[A]}{[A]}=-k \int_{0}^{t} d t \\
\ln \left([A]_{t}-[A]_{0}\right)=-k\left(t-t_{0}\right)
\end{gathered}
$$

First-order reaction

$$
\begin{gathered}
\ln [A]_{t}-\ln [A]_{0}=-k\left(t-t_{0}\right) \\
\ln [A]_{t}=\ln [A]_{0}-k t
\end{gathered}
$$

A plot of $\ln [A]$ versus t gives a straight line of slope $-k_{A}$ if $r=k[A]^{1}$

First-order reaction

$$
\ln [A]_{t}-\ln [A]_{0}=-k\left(t-t_{0}\right)
$$

$$
\begin{gathered}
\ln \left(\frac{[A]_{t}}{[A]_{0}}\right)=-k t \\
\frac{[A]_{t}}{[A]_{0}}=e^{-k t}
\end{gathered}
$$

$$
[A]_{t}=[A]_{0} e^{-k t} \begin{gathered}
\text { firs orderer reactions } \\
\text { decay exponentilly }
\end{gathered}
$$

First-order reaction: example

Ozone decays via first order kinetics
$\mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+\mathrm{O}(\mathrm{g}) \quad k=1.078 \times 10^{-5} \mathrm{~s}^{-1}$ at 300 K
$\left[\mathrm{O}_{3}\right]_{t}=\left[\mathrm{O}_{3}\right]_{0} e^{-k t}$

$$
\ln \frac{\left[\mathrm{O}_{3}\right]_{t}}{\left[\mathrm{O}_{3}\right]_{0}}=-k t
$$

What is slope?

What happens as k increases?

$$
[A]_{t}=[A]_{0} e^{-k t}
$$

$$
\begin{aligned}
& \mathrm{k}=0.0125 \mathrm{~s}^{-1} \\
& \mathrm{k}=0.0250 \mathrm{~s}^{-1} \\
& \mathrm{k}=0.0500 \mathrm{~s}^{-1} \\
& \mathrm{k}=0.1000 \mathrm{~s}^{-1}
\end{aligned}
$$

First-order reaction: example

Consider the process in which methyl isonitrile is converted to acetonitrile.

Methyl isonitrile

$\mathrm{CH}_{3} \mathrm{NC}$

How do we know this is a first order rxn?

First-order reaction: example

$\mathrm{CH}_{3} \mathrm{NC}$

This data was collected for this reaction at $198.9^{\circ} \mathrm{C}$.

Does
rate $=\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{NC}\right]$ for all time intervals?
$\mathrm{CH}_{3} \mathrm{CN}$

First-order reaction

$$
[A]_{t}=[A]_{0} e^{-k t}
$$

$$
\ln [A]_{t}=-k t+\ln [A]_{0}
$$

- When $\ln P$ is plotted as a function of time, a straight line results.
- The process is first-order.
$-k$ is the negative slope: $5.1 \times 10^{-5} \mathrm{~s}^{-1}$.

Half life: first-order reaction

- The time taken for [A] to drop to half its original value is called the reaction's half-life, $\mathrm{t}_{1 / 2}$. Setting [A] $=1 / 2[\mathrm{~A}]_{0}$ and $\mathrm{t}=\mathrm{t}_{1 / 2}$ in:

$$
\begin{aligned}
\ln \left(\frac{[A]_{t}}{[A]_{0}}\right) & =-k t \\
\ln \left(\frac{\frac{1}{2}[A]_{0}}{[A]_{0}}\right) & =-k t_{1 / 2}
\end{aligned}
$$

Half life: first-order reaction

$$
\begin{aligned}
& \ln \left(\frac{1}{2}\right)=-k t_{1 / 2}=-0.693 \\
\Rightarrow & t_{1 / 2}=\frac{0.693}{k} \quad \text { or } \quad k=\frac{0.693}{t_{1 / 2}}
\end{aligned}
$$

When is a reaction over?

- $[\mathrm{A}]=[\mathrm{A}]_{0} e^{-\mathrm{kt}}$

Technically $[\mathrm{A}]=0$ only after infinite time

Second-order reaction

Similarly, integrating the rate law for a process that is second-order in reactant A :

$$
\begin{gathered}
R=\frac{d[A]}{d t}=-k[A]^{2} \\
\frac{d[A]}{[A]^{2}}=-k d t \\
\int_{[A]_{0}}^{[A]_{t}} \frac{d[A]}{[A]^{2}}=-k \int_{0}^{t} d t
\end{gathered}
$$

Second-order reaction

$$
\begin{gathered}
-\frac{1}{[A]_{t}}-\left(-\frac{1}{[A]_{0}}\right)=-k\left(t-t_{0}\right) \\
\frac{1}{[A]_{t}}-\frac{1}{[A]_{0}}=k t
\end{gathered}
$$

also in the form $\quad y=m x+b$
A plot of $1 /[A]$ versus \dagger gives a straight line of slope k_{A} if $r=k_{A}[A]^{2}$

Determining rxn order

The decomposition of NO_{2} at $300^{\circ} \mathrm{C}$ is described by the equation

$$
\mathrm{NO}_{2}(g)
$$

$\mathrm{NO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$
and yields these data:

Time (s)	$\left[\mathrm{NO}_{2}\right], M$
0.0	0.01000
50.0	0.00787
100.0	0.00649
200.0	0.00481
300.0	0.00380

Determining rxn order

Graphing $\ln \left[\mathrm{NO}_{2}\right]$ vs. t yields:

- The plot is not a straight line, so the process is not firstorder in [A].

Time (s)	$\left[\mathrm{NO}_{2}\right], M$	$\ln \left[\mathrm{NO}_{2}\right]$
0.0	0.01000	-4.610
50.0	0.00787	-4.845
100.0	0.00649	-5.038
200.0	0.00481	-5.337
300.0	0.00380	-5.573

Does not fit:

$$
\ln [A]_{t}=-k t+\ln [A]_{0}
$$

Second-Order Processes

A graph of $1 /\left[\mathrm{NO}_{2}\right]$ vs. t gives this plot.

$$
\frac{1}{[A]_{t}}=k t+\frac{1}{[A]_{0}}
$$

Time (s)	$\left[\mathrm{NO}_{2}\right], M$	$1 /\left[\mathrm{NO}_{2}\right]$
0.0	0.01000	100
50.0	0.00787	127
100.0	0.00649	154
200.0	0.00481	208
300.0	0.00380	263

- This is a straight line. Therefore, the process is secondorder in $\left[\mathrm{NO}_{2}\right]$.

Half-Life

- Half-life is defined as the time required for one-half of a reactant to react.
- Because [A] at $t_{1 / 2}$ is one-half of the original [A],

$$
[\mathrm{A}]_{t}=0.5[\mathrm{~A}]_{0} .
$$

Half life: second-order reaction

For a second-order process, set $[\mathrm{A}]_{\mathrm{t}}=0.5[\mathrm{~A}]_{0}$ in 2 nd order equation.

$$
\begin{gathered}
\frac{1}{[A]_{t}}-\frac{1}{[A]_{0}}=k t \\
\frac{2}{[A]_{o}}-\frac{1}{[A]_{0}}=k t_{1 / 2} \\
\frac{1}{[A]_{0}}=k t_{1 / 2} \text { or } \frac{1}{k[A]_{0}}=t_{1 / 2}
\end{gathered}
$$

Outline: Kinetics

	First order	Second order	Second order (Bimoleculer)
Rate Laws	rate $=-k[A]$	rate $=-k[A]^{2}$	rate $=-k[A][B]$
Integrated Rate Laws	$\ln \frac{[A]_{t}}{[A]_{0}}=-k t$	$\frac{1}{[A]_{t}}=k t+\frac{1}{[A]_{0}}$	complicated (disclussed later)
Half-liife	$\frac{0.693}{k}=t_{\frac{1}{2}}$	$\frac{1}{k[A]_{0}}=t_{\frac{1}{2}}$	Complicated (discussed later)

Problems:

- Define/derive Integrated Rate Laws and Half-life of $\boldsymbol{3}^{\text {rd }}$-order and $\boldsymbol{n}^{\text {th }}$-order reactions whose rate laws are given below:

$$
R=k[B]^{3} \text { where } \quad R=k[A]^{n}
$$

Outline: Kinetics

Third order	$\mathrm{n}^{\text {th }}$-order	
Rate Laws	$\boldsymbol{R}=\boldsymbol{k}[\boldsymbol{A}]^{3}$	$\boldsymbol{R}=\boldsymbol{k}[\boldsymbol{A}]^{n}$
Integrated Rate Laws	$\frac{1}{2}\left(\frac{1}{[A]_{t}{ }^{2}}-\frac{1}{[A]_{0}{ }^{2}}\right)=k t$	$\frac{1}{n-1}\left(\frac{1}{[A]_{t}^{(n-1)}}-\frac{1}{[A]_{0}^{(n-1)}}\right)=k t$
Half-life	$\frac{3}{(2) k[A]_{o}{ }^{2}}=t_{1 / 2}$	$\frac{2^{n-1}-1}{(n-1) k[A]_{o}^{n-1}}=t_{1 / 2}$

Rate law for elementary reaction

- Law of Mass Action applies:
- rate of rxn \propto product of active masses of reactants
- "active mass" molar concentration raised to power of number of species
- Examples:
- $\mathbf{A} \rightarrow \mathrm{P}+\mathbf{Q}$
- $A+B \rightarrow C+D$
- $2 A+B \rightarrow E+F+G \quad$ rate $=k_{3}[A]^{2}[B]^{1}$
rate $=k_{1}[A]^{1}$
rate $=k_{2}[A]^{1}[B]^{1}$

Molecularity of elementary reactions?

- Unimolecular (decay) A $\rightarrow P$

$$
-\frac{d[A]}{d t}=k_{1}[A]
$$

- Bimolecular (collision) $A+B \rightarrow P$

$$
-\frac{d[A]}{d t}=k_{2}[A][B]
$$

- Termolecular (collision) $A+B+C \rightarrow P$

$$
-\frac{d[A]}{d t}=k_{3}[A][B][C]
$$

- No other are feasible! statistically highly unlikely.

Other order reactions...

Second order reaction:	$2 A \rightarrow$ products	$A+B \rightarrow$ products
Second order rate:	$R=-\frac{1}{2} \frac{d[A]}{d t}=k[A]^{2}$	$R=-\frac{d[A]}{d t}=k[A][B]$
Integrated rate law:	$\frac{1}{[A]_{t}}=\frac{1}{[A]_{0}}+2 k t$	$\frac{1}{\left([A]_{0}-[B]_{0}\right)} \ln \left(\frac{[B]_{0}[A]_{t}}{[A]_{0}[B]_{t}}\right)=k t$

Zero order reaction:

Zero order rate:
$A \rightarrow$ products

$$
R=-\frac{d[A]}{d t}=k
$$

Integrated rate law:

$$
[A]_{t}=[A]_{0}-k t
$$

Pseudo-first order reactions

You can "overload" the other reactants to determine the order with respect to one individual reactant (method of isolation).

For $A+B \rightarrow$ products, what happens if $[B] \gg[A]$?

$$
R=-\frac{d[A]}{d t}=k[B][A]
$$

Reversible reactions (small $\Delta_{r} G$)

$A \underset{k_{-1}}{\stackrel{k_{1}}{\leftrightarrows}} B \quad$ Assume first order, elementary $r x n$ in both directions
Rate: $\quad-\frac{d[A]}{d t}=k_{1}[A]-k_{-1}[B]$

Conservation of Mass:

$$
\begin{aligned}
& {[A]_{0}+[B]_{0}=[A]+[B]} \\
& {[B]=[A]_{0}+[B]_{0}-[A]}
\end{aligned}
$$

$$
-\frac{d[A]}{d t}=k_{1}[A]-k_{-1}\left([A]_{0}+[B]_{0}-[A]\right)
$$

Integrate:

$$
\ln \left(\frac{k_{1}[A]_{t}-k_{-1}\left([A]_{0}+[B]_{0}-[A]_{t}\right)}{k_{1}[A]_{0}-k_{-1}[B]_{0}}\right)=-\left(k_{1}+k_{-1}\right) t
$$

At equilibrium

$$
\mathrm{A} \underset{\mathrm{k}_{-1}}{\stackrel{\mathrm{k}_{1}}{\rightleftarrows}} \mathrm{~B} \quad-\frac{d[A]}{d t}=k_{1}[A]-k_{-1}[B]
$$

At equilibrium... $-\frac{d[A]}{d t}=0 \longrightarrow k_{1}[A]_{e q}=k_{-1}[B]_{e q}$
The forward rate equals the reverse at equilibrium.
What is the equilibrium constant for this reaction? $K_{e q}=\frac{[B]_{e q}}{[A]_{e q}}$
In terms of rate constants?

$$
K_{e q}=\frac{k_{1}}{k_{-1}}
$$

Temperature dependence?

- $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{HCl}$

$\mathrm{k} / \mathrm{s}^{-1}$	$\mathrm{~T} / \mathrm{K}$
6.1×10^{-5}	700
$30 \times 10^{-5} 727$	
$242 \times 10^{-5} 765$	

- Conclusion: very sensitive to temperature
- Rule of thumb: rate \approx doubles for a 10 K rise

Details of T dependence

Hood

- $k=A \exp \{-B / T\}$

Arrhenius

- $\mathrm{k}=\mathrm{A} \exp \{-\mathrm{E} / \mathrm{RT}\}$

A A-factor or
pre-exponential factor
$\equiv \mathrm{k}$ at $\mathrm{T} \rightarrow \infty$
E activation energy
(energy barrier) $\mathrm{J} \mathrm{mol}^{-1}$ or $\mathrm{kJ} \mathrm{mol}^{-1}$
R gas constant.

Arrhenius eqn. $k=A \exp \{-E / R T\}$

Useful linear form: $\ln \mathrm{k}=-(\mathrm{E} / \mathrm{R})(1 / \mathrm{T})+\ln \mathrm{A}$

- Plot $\ln k$ along Y -axis vs (1/T) along X -axis

Slope is negative
$-(\mathrm{E} / \mathrm{R})$; intercept $=\ln \mathrm{A}$

- Experimental es range from 0 to $+400 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Examples:

$$
\begin{array}{lc}
-\mathrm{H}^{\bullet}+\mathrm{HCl} \rightarrow \mathrm{H}_{2}+\mathrm{Cl}^{\bullet} & 19 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
-\mathrm{H}^{\bullet}+\mathrm{HF} \rightarrow \mathrm{H}_{2}+\mathrm{F}^{-} & 139 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C} \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{HI} & 209 \mathrm{kol}^{-1} \\
-\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{CH}_{3} & 368 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

Practical Arrhenius plot, origin not included

Rate constant expression
 $$
k=A \exp \left(\frac{-E_{A}}{R T}\right)
$$

$$
\begin{array}{cc}
\frac{k_{1}}{k_{2}}=\frac{A}{A} \exp \left(\frac{\frac{\left(-E_{A}\right)}{R T_{1}}}{\frac{\left(-E_{A}\right)}{R T_{2}}}\right) & \ln \left(\frac{1}{2}\right)=\left(\frac{-E_{A}}{8.314}\right)\left(\frac{1}{293.15}-\frac{1}{303.15}\right) \\
\frac{k_{1}}{k_{2}}=\exp \left(\frac{-E_{A}}{R}\right)\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) & -0.693=\left(\frac{-E_{A}}{8.314}\right)\left(1.12526 \times 10^{-4}\right) \\
\ln \left(\frac{k_{1}}{k_{2}}\right)=\left(\frac{-E_{A}}{R}\right)\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) & -6158.58=\left(\frac{-E_{A}}{8.314}\right) \Rightarrow E_{A}=51.202 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

Temperature Dependence of k

Svante Arrhenius
Winner of the $3^{\text {rd }}$ Nobel Prize in Chemistry

The rate constant can vary in different ways with T .

(a)

(b)

(c)

Differential form of the Arrhenius Equation:

$$
\frac{d \ln k}{d T}=\frac{E_{a}}{R T^{2}}
$$

Integrated forms of Arefhemenius Parameters
$\ln k=\ln A-\frac{E_{a}}{R T} \quad k=A e^{-E_{a} / R T}$
E_{a} is the activation energy. This is the energy required to get over a barrier (at the activated or transition state) between the reactants and

Activated (or transition) state
 products. E_{a} has units of energy and is T

Reaction coordinate independent.
A is the pre-exponential or Arrhenius factor and is T dependent. A is a measure of rate at which collisions occur (and takes lots of things into acct such as orientation, molecular size, number of molecules per volume, molecular velocity, etc).

$$
2 \mathrm{HI}(\mathrm{~g}) \rightarrow \mathrm{I}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

Transition-State Theory

Reaction coordinate

Transition state theory assumes that the transition state and reactants are in equilibrium with each other, and uses concepts from chemical equilibrium and statistical mechanics to find kinetic info such as rate constants!

Eyring Equation (key to transition-state theory)

$$
k=\frac{k_{B} T}{h} K_{C}^{\ddagger}
$$

From CEq: $\quad K^{\ddagger}=e^{-\Delta G_{<}^{\ddagger} / R T}$ So...

$$
k=\frac{k_{B} T}{h} e^{-\Delta G^{\ddagger} / R T} \xrightarrow{\Delta G=\Delta H-T \Delta S} k=\frac{k_{B} T}{h} e^{\Delta S^{\ddagger} / R} e^{-\Delta H^{\ddagger} / R T}
$$

Necessary Pieces...
 Relating E_{a} to thermodynamics!

Arrhenius Equation: $\ln k=\ln A-\frac{E_{a}}{R T}$
Differentiate wrt T: $\quad \frac{d \ln k}{d T}=\frac{E_{a}}{R T^{2}} \quad$ or $\quad E_{a}=R T^{2} \frac{d \ln k}{d T}$
From Eyring Equation: $\quad \frac{d \ln k}{d T}=\frac{1}{T}+\frac{d \ln K_{C}^{\ddagger}}{d T}$
van't Hoff Equation (for K_{c}): $\quad \frac{d \ln K_{C}}{d T}=\frac{\Delta U}{R T^{2}}$
Putting it all together...

$$
E_{a}=R T^{2}\left(\frac{1}{T}+\frac{d \ln K_{c}^{\ddagger}}{d T}\right) \quad \text { or } \quad E_{a}=R T+\Delta U^{\ddagger}
$$

$$
\begin{aligned}
& \text { What about } A \text {, the pre-exponential? } \\
& E_{a}=R T+\Delta U^{\ddagger} \text { and } \Delta U^{\ddagger}=\Delta H^{\ddagger}-R T \Delta^{\ddagger} n_{g}
\end{aligned}
$$

$$
\text { so } E_{a}=R T+\Delta H^{\ddagger}-R T \Delta^{\ddagger} n
$$

Unimolecular Gas Phase Reaction

$$
\begin{aligned}
& \quad \begin{array}{l}
A \rightarrow \mathrm{~A}^{\ddagger} \rightarrow \text { Products } \\
k=\frac{k_{B} T}{h} e^{\Delta S^{\ddagger} / R} e^{-\Delta H^{\ddagger} / R T} \quad E_{a}=R T+\Delta H^{\ddagger} \\
\quad k=e \frac{k_{B} T}{h} e^{\Delta S^{\ddagger} / R} e^{-E_{a} / R T}
\end{array}, \quad .
\end{aligned}
$$

Bimolecular Gas Phase Reaction

$$
\mathrm{A}+\mathrm{B} \rightarrow \mathrm{AB}^{\ddagger} \rightarrow \text { Products } \quad \text { so } \quad E_{a}=\Delta H^{\ddagger}+2 R T
$$

$$
k=e^{2} \frac{k_{B} T}{h} e^{\Delta S^{\ddagger} / R} e^{-E_{A} / R T} \quad \text { What is } A \text { ? }
$$

Lab

In the NMR/N,N-DMA Paper, Gasparro et al. found an activation energy of $70.3 \mathrm{~kJ} / \mathrm{mol}$ and a pre-factor of $1.87 \times 10^{10} \mathrm{~s}^{-1}$. Using these values, and a temperature of 298 K , find...

ΔH^{\ddagger}
 ΔS^{\ddagger}
 ΔG^{\ddagger}

Why is TST important?

1. Provides details of a reaction on the molecular scale.
2. Connects quantum mechanics and kinetics.
3. Currently used for many computational studies on reaction rates.

Reaction Mechanisms

Always remember....

- One can never prove a reaction mechanism, although evidence may disprove a mechanism.
- Verifying proposed mechanisms requires extensive experimental verification of each proposed step!

Let's examine a reaction ... $A \xrightarrow{k_{o b s}} P$

Reaction could progress in multiple ways... How can we distinguish?

Case 1: One elementary step
Case 2: Two step reaction

$$
\begin{array}{rl}
A \xrightarrow{k_{1}} P & A \xrightarrow{k_{1}} I \\
& I \xrightarrow{k_{2}} P
\end{array}
$$

let's focus on the intermediate...

$$
A \xrightarrow{k_{1}} I \xrightarrow{k_{2}} P
$$

How do k_{1} and k_{2} relate in case a ? in case b ?
(a) I forms quickly but decays slowly... k_{1} is fast relative to k_{2}.
(b) I builds up to a constant, nearly negligible, concentration until near end of reaction. ... k_{1} is slow relative to k_{2}.

Rate Laws do not yield unique mechanisms

 An empirically determined rate law does not imply a unique reaction mechanism!Consider reaction: $\quad 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \xrightarrow{k_{o b s}} 2 \mathrm{NO}_{2}(g)$

Experimentally, it was determined that the rate is given by:

$$
v(t)=k_{o b s}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]
$$

Researchers proposed two possible mechanisms. They need to determine if one of them is correct.

So how would researchers distinguish between the mechanisms?

Remember the Chain Rxn from CK-6?
 $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{g}) \quad v(t)=\frac{2 k^{\prime}\left[\mathrm{H}_{2}\right]\left[\mathrm{Br}_{2}\right]^{1 / 2}}{1+k^{\prime \prime}[\mathrm{HBr}]\left[\mathrm{Br}_{2}\right]^{-1}}$

Proposed Mechanism
Initiation: $\quad B r_{2}(g)+M(g) \xrightarrow{k_{1}} 2 B r(g)+M(g)$
Propagation: $\left\{\begin{array}{l}\mathrm{Br}^{\prime}(g)+\mathrm{H}_{2}(g) \xrightarrow{k_{2}} \operatorname{HBr}(g)+H^{\prime}(g) \\ H^{\prime}(g)+B r_{2}(g) \xrightarrow{k_{3}} H B r(g)+B r(g)\end{array}\right.$
Inhibition:

Termination:

$$
2 B r(g)+M(g) \xrightarrow{k_{-1}} B r_{2}(g)+M(g)
$$

A reaction: $\mathrm{CO}+\mathrm{Cl}_{2} \not X \mathrm{COCl}_{2} \ldots \ldots$. ??

- Exptal rate law:

$$
-\frac{d[C O]}{d t}=k[C O]\left[C_{2}\right]^{1 / 2}
$$

- Conclusion?: reaction does not proceed as written
- "Elementary" reactions; rxns. that proceed as written at the molecular level.
$-\mathrm{Cl}_{2} \rightarrow \mathrm{Cl}+\mathrm{Cl}$
$-\mathrm{Cl}+\mathrm{CO} \rightarrow \mathrm{COCl}$
$-\mathrm{COCl}+\mathrm{Cl}_{2} \rightarrow \mathrm{COCl}_{2}+\mathrm{Cl}$
$-\mathrm{Cl}+\mathrm{Cl} \rightarrow \mathrm{Cl}_{2}$
(4)
- Decay
- Collisional
- Collisional
- Collisional
- Steps 1 through 4 comprise the "mechanism" of the reaction.

$$
-\frac{d[C O]}{d t}=k_{2}[C O]\left[\mathrm{Cl}_{2}\right]^{1 / 2}
$$

- If steps 2 \& 3 are slow in comparison to 1 \& 4.then,
$-\mathrm{Cl}_{2} \rightleftharpoons 2 \mathrm{Cl}$ or $\mathrm{K}=[\mathrm{Cl}]^{2} /\left[\mathrm{Cl}_{2}\right]$
- So $[\mathrm{Cl}]=\sqrt{\mathrm{K}} \times\left[\mathrm{Cl}_{2}\right]^{1 / 2}$
- Hence:

$$
-\frac{d[C O]}{d t}=k_{2}^{1 / 2} \cdot[C O] \cdot\left[C l_{2}\right]^{1 / 2}
$$

Predict that: observed $k=k_{2} \times \sqrt{ } \mathrm{K}$

- Therefore mechanism confirmed (?)

$$
\mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow 2 \mathrm{HI}
$$

- Predict: $+(1 / 2)(\mathrm{d}[\mathrm{HI}] / \mathrm{dt})=\mathrm{k}\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]$
- But if via:

$$
\begin{aligned}
& -\mathrm{I}_{2} \rightarrow 2 \mathrm{I} \\
& -\mathrm{I}+\mathrm{I}+\mathrm{H}_{2} \rightarrow 2 \mathrm{HI} \quad \text { rate }=\mathrm{k}_{2}[\mathrm{I}]^{2}\left[\mathrm{H}_{2}\right] \\
& -\mathrm{I}+\mathrm{I} \rightarrow \mathrm{I}_{2}
\end{aligned}
$$

Assume, as before, that $1 \& 3$ are fast cf. to 2 Then: $\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{I}$ or $\mathrm{K}=[\mathrm{I}]^{2} /\left[\mathrm{I}_{2}\right]$

- Rate $=\mathrm{k}_{2}[\mathrm{I}]^{2}\left[\mathrm{H}_{2}\right]=\mathrm{k}_{2} \mathrm{~K}\left[\mathrm{I}_{2}\right]\left[\mathrm{H}_{2}\right]$ (identical)

Check? $I_{2}+h \nu \rightarrow 2$ I (light of 578 nm)

Problem

- In the decomposition of azomethane, A , at a pressure of $21.8 \mathrm{kPa} \&$ a temperature of 576 K the following concentrations were recorded as a function of time, t :
Time, $t / \mathrm{mins} \quad 0 \quad \begin{array}{lllll}30 & 60 & 90 & 120\end{array}$ [A] / mmol dm ${ }^{-3} \quad 8.70 \quad 6.524 .89 \quad 3.67 \quad 2.75$
- Show that the reaction is $1^{\text {st }}$ order in azomethane \& determine the rate constant at this temperature.

Recognise that this is a rate law question dealing with the integral method.

$$
-(\mathrm{d}[\mathrm{~A}] / \mathrm{dt})=\mathrm{k}[\mathrm{~A}]^{?}=\mathrm{k}[\mathrm{~A}]^{1}
$$

Re-arrange \& integrate

- Test: $\ln [\mathrm{A}]=-\mathrm{kt}+\ln [\mathrm{A}]_{0}$

Complete table:
Time, t/mins $\quad 0 \quad 30 \quad 60 \quad 90 \quad 120$
In [A] $\quad 2.16 \quad 1.88 \quad 1.59 \quad 1.301 .01$

- Plot $\ln [A]$ along y-axis; t along x-axis
- Is it linear? Yes. Conclusion follows.

Calc. slope as: -0.00959 so $\mathrm{k}=+9.6 \times 10^{-3} \min ^{-1}$

More recent questions ...

- Write down the rate of $r \times n$ for the $r \times n$:

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2}=3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

- for both products \& reactants
[8 marks]
For a $2^{\text {nd }}$ order rxn the rate law can be written:

$$
-(d[\mathrm{~A}] / d t)=k[\mathrm{~A}]^{2}
$$

What are the units of k ?
[5 marks]

- Why is the elementary rxn $\mathrm{NO}_{2}+\mathrm{NO}_{2} \Rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$ referred to as a bimolecular rxn?
[3 marks]

