Drs. Jaslin Ikhsan, M.App.Sc., Ph.D.

Chemistry Ed. Department State University of Yogyakarta

Kinetic Theory of Gases I: Gas Pressure Translational Kinetic Energy Root Mean Square Speed

GASES

- Gases are one of the most pervasive aspects of our environment on the Earth. We continually exist with constant exposure to gases of all forms.
- The steam formed in the air during a hot shower is a gas.
- The Helium used to fill a birthday balloon is a gas.
- The oxygen in the air is an essential gas for life.

A windy day or a still day is a result of the difference in pressure of gases in two different locations. A fresh breeze on a mountain peak is a study in basic gas laws.

Mixture of gases

The Kinetic Molecular Model for Gases

Gas consists of large number of small individual particles with negligible size

- Particles in constant random motion and collisions
- No forces exerted among each other

□ Kinetic energy directly proportional to temperature in Kelvin $KE = \frac{3}{2} \cdot R \cdot T$

The Ideal Gas Law

n: the number of moles in the ideal gas

$$n = \frac{N}{N_A}$$

 total number of molecules

 $PV = nRT \leftarrow in K$

Avogadro's number: the number of atoms, molecules, etc, in a mole of a substance: N_A =6.02 x 10²³/mol.

R: the Gas Constant: $R = 8.31 \text{ J/mol} \cdot \text{K}$

Pressure and Temperature

Pressure: Results from collisions of molecules on the surface

Pressure:
$$P = \frac{F}{A}$$
 Force

Force:

 $F = \frac{dp}{dt}$ Rate of momentum given to the surface

Momentum: momentum given by each collision times the number of collisions in time dt

Only molecules moving toward the surface hit the surface. Assuming the surface is normal to the x axis, half the molecules of speed v_x move toward the surface.

Only those close enough to the surface hit it in time dt, those within the distance $v_x dt$

The number of collisions hitting an area A in time dt is 1(N)

 $\leq |v_x| dt$ $\hat{v_x}$ Wall Cylinder; volume $A |v_r| dt$ Average density

The momentum given by each collision to the surface $2mv_x$

Momentum in time dt

$$dp = (2mv_x) \cdot \frac{1}{2} \cdot \left(\frac{N}{V}\right) \cdot A \cdot v_x dt$$

$$F = \frac{dp}{dt} = \left(2mv_x\right) \cdot \frac{1}{2} \cdot \left(\frac{N}{V}\right) \cdot A \cdot v_x$$

Pressure

$$P = \frac{F}{A} = \frac{N}{V}mv_x^2$$

Not all molecules have the same $\frac{v_x}{x} \Rightarrow \text{average} \quad \overline{v_x^2}$

$$P = \frac{N}{V} m \overline{v_x^2}$$

$$v_x^2 = \frac{1}{3}v^2 = \frac{1}{3}\left(v_x^2 + v_y^2 + v_z^2\right)$$
$$\overline{v_x^2} = \frac{1}{3}\overline{v^2} = \frac{1}{3}v_{rms}^2$$

 v_{rms} is the root-mean-square speed

$$v_{rms} = \sqrt{\overline{v^2}} = \sqrt{\frac{\overline{v_x^2} + \overline{v_y^2} + \overline{v_z^2}}{3}}$$

Pressure:
$$P = \frac{1}{3} \frac{N}{V} m \overline{v^2} = \frac{2}{3} \left(\frac{N}{V} \right) \left(\frac{1}{2} m \overline{v^2} \right)$$

Average Translational Kinetic Energy: $\overline{K} = \frac{1}{2}m\overline{v^2} = \frac{1}{2}mv_{rms}^2$ **Pressure:**

$$P = \frac{2}{3} \cdot \frac{N}{V} \cdot \overline{K}$$

From
$$PV = \frac{2}{3} \cdot N \cdot \overline{K}$$
 and $PV = nRT$

Temperature:

$$\overline{K} = \frac{3}{2} \cdot \frac{nRT}{N} = \frac{3}{2} \cdot k_B T$$

Boltzmann constant:

$$k_B = \frac{R}{N_A} = 1.38 \times 10^{-23} \text{ J/K}$$

From
$$PV = \frac{1}{3} \cdot N \cdot mv_{rms}^2$$

and $PV = nRT = \frac{N}{N_A}RT$
Avogadro's number
 $N = nN_A$
 $N = nN_A$

$$M = mN_A$$

Pressure Ø Density x Kinetic Energy

Temperature *☑* **Kinetic Energy**

(a) Compute the root-mean-square speed of a nitrogen molecule at 20.0 °C. At what temperatures will the root-mean-square speed be (b) half that value and (c) twice that value?

(a)

$$v_{rms} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3(8.31 \text{ J/mol} \cdot \text{K})(293 \text{ K})}{28.0 \times 10^{-3} \text{ kg/mol}}} = 511 \text{ m/s}$$

(b) Since $v_{rms} \propto \sqrt{T}$ $\frac{v_{rms}'^2}{v_{rms}^2} = \frac{T'}{T}$
for 0.5 v_{rms} $T' = 0.5^2 T = 73.3 \text{K} = -200 \text{ C}$
for 2 v_{rms} $T'' = 2^2 T = 1.17 \times 10^3 \text{K} = 899 \text{ C}$

Please estimate the root mean square mean velocity of Hydrogen gas.

A. 2000B. 1000C. 500E. 250D. 100m/s

What is the average translational kinetic energy of nitrogen molecules at 1600K, (a) in joules and (b) in electron-volts?

(a)
$$\overline{K} = \frac{3}{2} k_B T = \frac{3}{2} (1.38 \times 10^{-23} \text{ J/K}) (1600 \text{ K})$$

= $3.31 \times 10^{-20} \text{ J}$

(b) 1 eV = 1.60 x 10⁻¹⁹ J
$$\overline{K} = \frac{3.31 \times 10^{-20} \text{J}}{1.60 \times 10^{-19} \text{J/eV}} = 0.21 \text{ eV}$$

$$\overline{K} = \frac{3}{2} \cdot k_B T$$