Drs. Jaslin Ikhsan, M.App.Sc., Ph.D.
Chemistry Ed. Department
State University of Yogyakarta

Kinetic Theory of Gases I:

- Gas Pressure
- Translational Kinetic Energy
- Root Mean Square Speed

GASES

- Gases are one of the most pervasive aspects of our environment on the Earth. We continually exist with constant exposure to gases of all forms.
- The steam formed in the air during a hot shower is a gas.
- The Helium used to fill a birthday balloon is a gas.
- The oxygen in the air is an essential gas for life.

GASES

A windy day or a still day is a result of the difference in pressure of gases in two different locations. A fresh breeze on a mountain peak is a study in basic gas laws.

Mixture of gases

The Kinetic Molecular Model for Gases

\square Gas consists of large number of small individual particles with negligible size
a Particles in constant random motion and collisions

- No forces exerted among each other
- Kinetic energy directly proportional to temperature in Kelvin

$$
K E=\frac{3}{2} \cdot R \cdot T
$$

The Ideal Gas Law

$P V=n R T$

in K

\boldsymbol{n} : the number of moles in the ideal gas

Avogadro's number: the number of atoms, molecules, etc, in a mole of a substance: $N_{A}=6.02 \times 10^{23} / \mathrm{mol}$.
\boldsymbol{R} : the Gas Constant: $R=8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$

Pressure and Temperature

Pressure: Results from collisions of molecules on the surface

Pressure:

$$
P=\frac{F}{A} \longleftarrow \text { Force }
$$

Force:

$$
F=\frac{d p}{d t} \longleftarrow \begin{aligned}
& \text { Rate of momentum } \\
& \text { given to the surface }
\end{aligned}
$$

Momentum: momentum given by each collision times the number of collisions in time $d t$

Only molecules moving toward the surface hit the surface. Assuming the surface is normal to the x axis, half the molecules of speed v_{x} move toward the surface.

Only those close enough to the surface hit it in time $d t$ those within the distance $v_{x} d t$

The number of collisions hitting an area A in time $d t$ is

$$
\frac{1}{2}\left(\frac{N}{V}\right) \cdot A \cdot v_{x} \cdot d t
$$

Average density

The momentum given by each collision to the surface $2 m v_{x}$

Momentum in time $d t$

$$
d p=\left(2 m v_{x}\right) \cdot \frac{1}{2} \cdot\left(\frac{N}{V}\right) \cdot A \cdot v_{x} d t
$$

Force

$$
F=\frac{d p}{d t}=\left(2 m v_{x}\right) \cdot \frac{1}{2} \cdot\left(\frac{N}{V}\right) \cdot A \cdot v_{x}
$$

Pressure

$$
P=\frac{F}{A}=\frac{N}{V} m v_{x}^{2}
$$

Not all molecules have the same $v_{x} \Rightarrow$ average $\overline{v_{x}^{2}}$

$$
P=\frac{N}{V} m \overline{v_{x}^{2}}
$$

$$
v_{x}^{2}=\frac{1}{3} v^{2}=\frac{1}{3}\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)
$$

$v_{r m s}$ is the root-mean-square speed

$$
v_{r m s}=\sqrt{\overline{v^{2}}}=\sqrt{\frac{\overline{v_{x}^{2}}+\overline{v_{y}^{2}}+\overline{v_{z}^{2}}}{3}}
$$

Pressure: $P=\frac{1}{3} \frac{N}{V} m \overline{v^{2}}=\frac{2}{3}\left(\frac{N}{V}\right)\left(\frac{1}{2} m \overline{v^{2}}\right)$
Average Translational Kinetic Energy

$$
\bar{K}=\frac{1}{2} m \overline{v^{2}}=\frac{1}{2} m v_{r m s}^{2}
$$

Pressure:

$P=\frac{2}{3} \cdot \frac{N}{V} \cdot \bar{K}$

From $P V=\frac{2}{3} \cdot N \cdot \bar{K}$ and $P V=n R T$
Temperature: $\bar{K}=\frac{3}{2} \cdot \frac{n R T}{N}=\frac{3}{2} \cdot k_{B} T$

Boltzmann constant: $k_{B}=\frac{R}{N_{A}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$

From $P V=\frac{1}{3} \cdot N \cdot m v_{r m s}^{2}$
and $P V=n R T=\frac{N}{N_{A}} R T$

$$
v_{r m s}=\sqrt{\frac{3 R T}{M}}
$$

$$
M=m N_{A}
$$

Pressure $\begin{aligned} & \text { Density } \\ & \text { x Kinetic Energy }\end{aligned}$

Temperature \boxtimes Kinetic Energy
(a) Compute the root-mean-square speed of a nitrogen molecule at $20.0^{\circ} \mathrm{C}$. At what temperatures will the root-meansquare speed be (b) half that value and (c) twice that value?
(a)

$$
v_{r m s}=\sqrt{\frac{3 R T}{M}}
$$

$$
v_{r m s}=\sqrt{\frac{3 R T}{M}}=\sqrt{\frac{3(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(293 \mathrm{~K})}{28.0 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}}}=511 \mathrm{~m} / \mathrm{s}
$$

(b) Since $v_{r m s} \propto \sqrt{T} \quad \frac{v_{r m s}^{\prime 2}}{v_{r m s}^{2}}=\frac{T^{\prime}}{T}$
for $0.5 v_{r m s} \quad T^{\prime}=0.5^{2} T=73.3 \mathrm{~K}=-200 \mathrm{C}$
for $2 v_{r m s} \quad T^{\prime \prime}=2^{2} T=1.17 \times 10^{3} \mathrm{~K}=899 \mathrm{C}$

Please estimate the root mean square mean velocity of Hydrogen gas.

$$
\begin{array}{ll}
\text { A. } 2000 & \text { B. } 1000 \\
\text { E. } 250 & \text { D. } 100 \mathrm{~m} / \mathrm{s}
\end{array}
$$

What is the average translational kinetic energy of nitrogen molecules at 1600 K , (a) in joules and (b) in electron-volts?
(a)

$$
\begin{aligned}
\bar{K} & =\frac{3}{2} k_{B} T=\frac{3}{2}\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(1600 \mathrm{~K}) \\
& =3.31 \times 10^{-20} \mathrm{~J}
\end{aligned}
$$

(b) $1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$

$$
\bar{K}=\frac{3.31 \times 10^{-20} \mathrm{~J}}{1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}}=0.21 \mathrm{eV}
$$

$$
\bar{K}=\frac{3}{2} \cdot k_{B} T
$$

