TRANSPORT OF IONS IN SOLUTION

- Conductivity of electrolyte solutions
- Strong and weak electrolyte
- Ion Mobility
 - Ion mobility and conductivity,
 - Transport number
- Diffusion

Jaslin Ikhsan, Ph.D.

Chemistry Ed. Department State University of Yogyakarta

Conductivity of Electrolyte Solution

- Ions in solution can be set in motion by applying a potential difference between two electrodes.
- The conductance (G) of a solution is defined as the inverse of the resistance (R):

$$G = \frac{1}{R}$$
, in units of Ω^{-1}

• For parallel plate electrodes with area A, it follows: $G = \frac{\kappa A}{L}$

Where,

K: the conductivity, L: the distance separating the plates Units:

$$G \rightarrow S \text{ (siemens)}$$
$$R \rightarrow \Omega$$
$$\kappa \rightarrow S \text{ m}^{-1}$$

Conductivity of Electrolyte Solution

• The conductivity of a solution depends on the number of ions present. Consequently, the molar conductivity Λ_m is used

$$\Lambda_m = \frac{\kappa}{C}$$

- C is molar concentration of electrolyte and unit of Λ_m is S m² mol⁻¹
- In real solutions, Λ_m depends on the concentration of the electrolyte. This could be due to:
- Ion-ion interactions $\rightarrow \gamma_{\pm} \neq 1$
- The concentration dependence of conductance indicates that there are 2 classes of electrolyte
 - ✓ Strong electrolyte: molar conductivity depends slightly on the molar concentration
 - ✓ Weak electrolyte: molar concentration falls sharply as the concentration increases

Conductivity of Electrolyte Solution

In real solutions, Λ_m depends on the concentration of the electrolyte. This could be due to:

1. Ion-ion interactions $\rightarrow \gamma_{\pm} \neq 1$

2. Incomplete dissociation of electrolyte

strong electrolyte, weak dependence of Λ_m on *C*

weak electrolyte, strong dependence of $\Lambda_{\rm m}$ on *C*

Strong Electrolyte

- Fully ionized in solution
- Kohlrausch's law $\Lambda_m = \Lambda^0_m KC^{1/2}$

✓ Λ⁰_m is the limiting molar conductivity
 ✓ K is a constant which typically depends on the stoichiometry of the electrolyte

 C^{1/2} arises from ion-ion interactions as estimated by the Debye-Hückel theory.

Strong Electrolyte

• Law of the independent migration of ions: limiting molar conductivity can be expressed as a sum of ions contribution

$$\Lambda^0_{\ m} = \nu_{\!_+} \lambda_{\!_+} + \nu_{\!_-} \lambda_{\!_-}$$

 ✓ ions migrate independently in the zero concentration limi

	$\lambda/(\mathrm{mS}\mathrm{m}^2\mathrm{mol}^{-1})$	$\lambda/(mS m^2 mol^{-1})$	
H^{+}	34.96	OH-	19.91
Na ⁺	5.01	Cl ⁻	7.63
K^+	7.35	Br^-	7.81
Zn ²⁺	10.56	SO_{4}^{2-}	16.00

For example, limiting molar conductivity of BaCl₂ in water will be: 12.73+2*7.63=27.98 mS m² mol⁻¹.

Weak Electrolyte

• Not fully ionized in solution $HA(aq) + H_2O(l) \iff H_3O^+(aq) + A^-(aq)$ $(1-\alpha)c \iff \alpha c \qquad \alpha c$				
$K_a = \frac{\alpha^2 c}{1 - \alpha}, \qquad \frac{1}{\alpha} = 1 + \frac{\alpha}{K}$	$\alpha \text{is degree of ionisation}$			
$\alpha^{2}c = K_{a} - K_{a}\alpha$ $c\alpha^{2} + K_{a}\alpha - K_{a} = 0$ $\alpha = \frac{-K_{a} \pm \sqrt{K_{a}^{2} + 4K_{a}c}}{2c}$ $\alpha = \frac{-K_{a}}{2c} \pm \frac{\sqrt{K_{a}^{2} + 4K_{a}c}}{2c}$	$\alpha = \frac{-K_a}{2c} \pm \frac{K_a}{2c} \left(1 + \frac{4c}{K_a}\right)^{1/2}$ $\alpha = \frac{K_a}{2c} \left[\left(1 + \frac{4c}{K_a}\right)^{1/2} - 1\right]$			

Weak Electrolyte

 The molar Conductivity (at higher concentrations) can be expressed as:

$$\Lambda_m = \alpha \Lambda^0{}_m$$

- At infinite dilution, the weak acid is fully dissociated (α = 100%)
- It can be proven by the Ostwald dilution law which allows estimating limiting molar conductance:

$$\frac{1}{\Lambda_m} = \frac{1}{\Lambda_m^0} + \frac{c\Lambda_m}{K_a(\Lambda_m^0)^2} \leftarrow$$

$$\Lambda_{m} = \alpha \Lambda_{m}^{0}$$

$$\frac{1}{\Lambda_{m}} = \frac{1}{\alpha \Lambda_{m}^{0}}$$

$$\frac{1}{\Lambda_{m}} = \frac{1}{\Lambda_{m}^{0}} x \frac{1}{\alpha}$$

$$\frac{1}{\Lambda_{m}} = \frac{1}{\Lambda_{m}^{0}} x \left(1 + \frac{\alpha c}{K_{a}}\right)$$

$$\frac{1}{\Lambda_{m}} = \frac{1}{\Lambda_{m}^{0}} + \frac{c}{K_{a} \Lambda_{m}^{0}} x \frac{\Lambda_{m}}{\Lambda_{m}^{0}}$$

Weak Electrolyte

• The limiting molar conductance:

$$\frac{1}{\Lambda_m} = \frac{1}{\Lambda_m^0} + \frac{c\Lambda_m}{K_a (\Lambda_m^0)^2} \qquad 1$$

Graph to determine the limiting value of the molar conductivity of a solution by extrapolation to zero concentration

 Ion movement in solution is random. However, a migrating flow can be onset upon applying an electric field ,

$$E = \frac{\Delta \phi}{L}$$
 $F = zeE = \frac{ze\Delta \phi}{L}$

- $\Delta \phi$ is the potential difference between 2 electrodes separated by a distance *L*
- F accelerates cations to the negatively charged electrode and anions in the opposite direction. Through this motion, ions experience a frictional force in the opposite direction. Taking the expression derived by Stoke relating friction and the viscosity of the solvent (η), it follows:

 $F_{fric} = 6\pi\eta rs$, (for ions with raidus r and velocity v)

The Mobility of Ions

• When the accelerating and retarding forces balance each other, *s is defined by:*

$$s = \frac{zeE}{6\pi\eta r} = \mu E$$
, where $\mu = \frac{ze}{6\pi\eta r}$

	<i>u</i> (10 ⁻⁸ m ² s ⁻¹ V ⁻¹)
H+	36.23
Na⁺	5. 1 9
K+	7.62
Li+	4.01
Zn ²⁺	5.47
OH-	20.64
Cl	7.91
Br⁻	8.09
SO42-	8.29

 u is mobility of ions, and r is hydrodynamic radius, that might be different from the ionic radius, small ions are more solvated than the bulk ones.

	η (10 ⁻³ kg m ⁻¹ s ⁻¹)
Benzene	0.601
Mercury	1.55
Pentane	0.224
Water	0.891

Viscosity of liquids at 298 K

Mobility in water at 298 K.

The Mobility of Ions and Conductivity

Anions

 $s_{\Delta t}$

Area, A

Cations

• Finally, it can be shown that:

$$\lambda = z \mu F$$
, where $F = N_A e$

Fully dissociated electrolyte:

$$J(ions) = \frac{s\Delta tA.vcN_A}{A\Delta t} = svcN_A$$

$$J(ch \operatorname{arg} e) = zervcN_A = zrvcF = z\mu EvcF$$

$$I = J.A = z\mu EvcFA = z\mu vcFA \frac{\Delta \phi}{L}$$

$$I = \frac{\Delta \phi}{R} = G\Delta \phi = \kappa \frac{\Delta \phi}{L} \quad \longrightarrow \quad \mathcal{K} = z\mu vcFA$$

The Mobility of Ions and Conductivity

• In solution:

$$\lambda = z \mu F$$
$$\Lambda^0_m = (z_+ \mu_+ v_+ + z_- \mu_- v_-) F$$

Example:

- 1. if μ =5x10⁻⁸ m²/Vs and z=1, Λ =10mS m² mol⁻¹.
- 2. From the mobility of Cl⁻ in aqueous solution, calculate the molar ionic conductivity.

 $\lambda = z \mu F$

 $\lambda = 7.91 \ x \ 10^{\text{-8}} \ m^2 \ s^{\text{-1}} V^{\text{-1}} \ x \ 96485 \ Cmol^{\text{-1}} = 7.63 x 10^{\text{-3}} \ sm^2 \ mol^{\text{-1}}$

The Mobility of Ions and Conductivity

- Taking a conductimetre cell with electrodes separated by 1 cm and an applied voltage of 1 V, calculate the drift speed in water at 298 K. $r_{Cs} = 170 \text{ pm}$ $\pi_{\rm H_2O} = 0.891 \,\mathrm{x10^{-3} \ kg \ m^{-1} \ s^{-1}}$ $\mu = \frac{ze}{6\pi\eta r} = \frac{1.602x10^{-19} C}{6x3.1416x0.891x10^{-3} kgm^{-1}s^{-1}x170x10^{-12}m}$ $\mu \approx 5 x 10^{-8} m^2 V^{-1} s^{-1}$ $E = \frac{\Delta \phi}{I} = \frac{1V}{0.01m} = 100 Vm^{-1}$ $s = \mu E = 5 \times 10^{-8} m^2 V^{-1} s^{-1} \times 100 V m^{-1} = 5 \times 10^{-6} m s^{-1}$
- It will take a Cs⁺ ion 2000 s to go from one electrode to another.
- For H⁺ ion, $\mu_{H}^{+}=36.23 \times 10^{-8} m^2 s^{-1} V^{-1}$, it will take 276 s.

Transport Numbers

• Transport numbers – fraction of total current carried by ions of specific type

$$t_{\pm} = \frac{I_{\pm}}{I}, \qquad t = t_{+} + t_{-}$$

 Limiting transport numbers – defined in the limit of zero concentration of electrolyte solution

$$t_{\pm}^{0} = \frac{Z_{\pm}\mu_{\pm}\nu_{\pm}}{Z_{+}\mu_{+}\nu_{+} + Z_{-}\mu_{-}\nu_{-}}$$

as $Z_{+}\nu_{+} = Z_{-}\nu_{-} \implies t_{\pm}^{0} = \frac{\mu_{\pm}}{\mu_{+} + \mu_{-}}$

or, using
$$\lambda = z\mu F \implies t_{\pm}^{0} = \frac{\nu_{\pm}\lambda_{\pm}}{\nu_{\pm}\lambda_{\pm} + \nu_{\pm}\lambda_{\pm}} = \frac{\nu_{\pm}\lambda_{\pm}}{\Lambda_{m}^{0}}$$

as we can measure transport number of individual ions, the ionic conductivity and ionic mobility can be determined as well

• Thermodynamic force

If the chemical potential depends on position, the maximum nonexpansion work

$$dw = d\mu = \left(\frac{\partial\mu}{\partial x}\right)_{p,T} dx$$

Comparing with dw = -Fdx

$$F = -\left(\frac{\partial \mu}{\partial x}\right)_{p,T} \quad \longleftarrow \quad \text{Thermodynamic force}$$

• Thermodynamic force

If the chemical potential depends on position, the maximum nonexpansion work

$$dw = d\mu = \left(\frac{\partial\mu}{\partial x}\right)_{p,T} dx$$

Comparing with dw = -Fdx

$$F = -\left(\frac{\partial \mu}{\partial x}\right)_{p,T} \quad \longleftarrow \quad \text{Thermodynamic force}$$

Thermodynamic force of concentration gradient

 $\mu = \mu_0 + RT \ln a$

Fick's law of diffusion:

Particles flux:
$$J \sim drift \ velocity \sim F \sim \frac{\partial c}{\partial x}$$

The Einstein relation

We know drift speed vs force relation for ion mobility, so we can deduce diffusion constant

$$s = \mu E = \frac{DzeN_AE}{RT}$$
 $\square \square D = \frac{\mu RT}{zF}$

For example: for $\mu = 5 \cdot 10^{-8} m^2 / sV$ we find $D = 1 \cdot 10^{-9} m^2 / s$

• The Nernst-Einstein equation

Molar conductivity of ions in the solution

$$\lambda = z\mu \mathbf{F} = \frac{z^2 D \mathbf{F}^2}{RT}$$

$$\Lambda_m = (\nu_+ z_+^2 D_+ + \nu_- z_-^2 D_-) \frac{F^2}{RT}$$

The Stokes-Einstein equation

How concentration distribution evolves with time due to diffusion ٠

$$\frac{\partial c}{\partial t} = \frac{JAdt}{Aldt} - \frac{J'Adt}{Aldt} = \frac{J-J'}{l}$$
$$J-J' = -D\frac{\partial c}{\partial x} + D\frac{\partial c'}{\partial x} = -D\frac{\partial c}{\partial x} + D\frac{\partial}{\partial x}\left(c + \left(\frac{\partial c}{\partial x}\right)l\right) = Dl\frac{\partial^2 c}{\partial x^2}$$
$$\frac{\partial c}{\partial t} = D\frac{\partial^2 c}{\partial x^2}$$

Diffusion with convection

∂t

∂x

$$\frac{\partial c}{\partial t} = \frac{JAdt}{Aldt} - \frac{J'Adt}{Aldt} = \frac{J - J'}{l}$$
$$J - J' = cv - c'v = \left(c - \left(c + \left(\frac{\partial c}{\partial x}\right)l\right)\right)v = vl\frac{\partial c}{\partial x}$$
$$\frac{\partial c}{\partial t} = v\frac{\partial c}{\partial x}$$
due to convection only

Solution of Diffusion Equation

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} - v \frac{\partial c}{\partial x}$$

 2nd order differential equation: two boundary condition are required for spatial dependence and single for time dependence

Diffusion Probablities

- Probability to find a particle at a given slab of thickness dx is proportional to the concentration there: $p(x) = c(x)AN_A dx/N_0$
- The mean distance traveled by the particles:

Random Walk

- Apparently diffusion can be modeled as a random walk, where particle is jumping distance λ in a time τ.
 Direction of the jump is chosen randomly
- One dimensional walk:

$$p = \left(\frac{2\tau}{\pi t}\right)^{1/2} e^{-x^2 \tau/2t\lambda^2}$$

Comparing with the solution of diffusion equation

$$P = \frac{\lambda^2}{2\tau}$$
 Einstein-Smoluchowski equation

Connection between microscopic and macroscopic parameters.

Problems

- Atkins 21.24a What fraction of the total current is carried by Li+ ions when current flows through an aqueous solution of LBr at 25°C.
- Atkins 21.25a The limiting molar conductivities of KCI, KNO₃, and AgNO₃ are 14.99 mS m² mol⁻¹, 14.50 mS m² mol⁻¹, and 13.34 mS m² mol⁻¹, respectively (all at 25°C). What is the limiting molar conductivity of AgCI at this temperature?
- Atkins P24.36. The diffusion coefficient of particular RNA molecule is 1.0x10⁻¹¹ m²/s. Estimate time required for a molecule to diffuse 1 um from nucleus to the cell wall

Summary

- Migration: Transport of ions induced by an electric field. The concentration dependence of the molar conductivity strongly differs for strong and weak electrolytes.
- Diffusion: Mass transport generated by a gradient of concentration.

Thank You