7. Differentiation of Trigonometric Function

RADIAN MEASURE. Let s denote the length of arc
AB intercepted by the central angle AOB on a circle of
radius r and let S denote the area of the sector AOB. (If s
is 1/360 of the circumference, ~ AOB = 1% if s =,
~<AOB = 1 radian). Suppose ZAOB is measured as a
degrees; then

(i) jcscz udu=-cotu+C and
s=" qgr?
360
Suppose next that ZAOB is measured as & radian; then
iy s=0r and S=v%or

A comparison of (i) and (ii) will make clear one of the advantages of radian measure.

TRIGONOMETRIC FUNCTIONS. Let € be any real v
number. Construct the angle whose measure is & radians  P(z. v
with vertex at the origin of a rectangular coordinate

4
system and initial side along the positive x-axis. Take P( \ .
X, y¥) on the terminal side of the angle a unit distance from 0
O; then sin &=y and cos @ = x. The domain of definition Fig, 122

of both sin @#and cos @ is the set or real number; the range
of sin #is -1 <y <1 and the range of cos #is -1 <x <1. From
sing 1

tand = —— and secd =
cosd cos @

it follows that the range of both tan #and sec @is set of real numbers while the domain

of definition (cos 8+ 0) is 6 # + n 7,(n=1,2,3,...). Itis left as an exercise for

the reader to consider the functions cot &and csc 6.
In problem 1, we prove
. sin@
lim——=1

60 @

(Had the angle been measured in degrees, the limit would have been n/180. For this
reason, radian measure is always used in the calculus)
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RULES OF DIFFERENTIATION. Let u be a differentiable function of x; then

d, . du d 2 du
14. — = — 17. — =— —

Ix (sinu) =cos u Ix Ix (cotu) =-csc” u ix

d . du d du
15. — = - — 18. — = —

Ix (cosu) =-sinu Ix Ix (secu) =secutanu Ix
16. i(tan u) = sec? Pl 19. i(cscu) _ _cscu cotu Y

dx dx dx dx

8. Differentiation of Inverse trigonometric functions

THE INVERSE TRIGONOMETRIC FUNCTIONS. If x=siny, the inverse

function is written y = arc sin x . The domain of definition of arc sin x is -1 <x <1, the

range of sin y; the range of arc sin x is the set if real numbers, the domain of definition
of sin y. The domain if definition and the range of the remaining inverse trigonometric

functions may be established in a similar manner.

The inverse trigonometric functions are multi-valued. In order that there be
agreement on separating the graph into single-valued arcs, we define below one such
arc (called the principal branch) for each function. In the accompanying graphs, the

principal branch is indicated by a thickening of the line.

B s el T

(0]

o=
7 4

t —

y = arc sin x y = arc cos X y = arc tan x
Fig. 13-1
Function Principal Branch

y = arc sin x —snsys<inm

y = arc cos X O<y<r

y = arc tan x —ST<Y<37W

y = arc cot x O<y<rxm

y = arc Sec X —-7sy<—37,0<y<3ix
y = arc csc X -r<ys-37,0<y<irn
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RULES OF DIFFERENTIATION. Let u be a differentiable function of x, then

20. i(arc sin u) = 1 du 23. i(arc cotu) = -
/ 2 dx dx
21. —(arc cosu) = - 1 du 24. i(arc secu) =
dx 1-u2 dx dx
22. d—(i((arc tanu) = 1+1u2 % 25. dix(arc cscu) = —

1 du
1+u? dx
1 du

u\/u2 -1 dx

1 du

uvu? -1 dx

9. DIFFERENTIATION OF EXPONENTIAL AND

LOGARITHMIC FUNCTIONS

h
THE NUMBER e = lim [1+%j = lim (1+ k)Y

= 1+1+1+£+...+£+...=2.17828...
21 3 n!

NOTATION. Ifa>0and a# 1, and if a¥ = x, then y = log x

y=log, x=1In x y = log,, x = log x

The domain of definition is x > 0; the range is the set of real numbers.

v

ey

v

S~

0 1
1
——/ z
0
y=Inx y =¥
Fig. 14-1
Rules of differentiation. If u is a differentiable function of x,
26. i(alogu)= 1 du (a 0,a=1_
dx ulnad
1 du
27. —
( u)= dx

28. —(a”) =a" Ina—)li,(u >0

du
2__ el) = el =2
9. (&)=

=)
]

-ax

I
0]
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LOGARITHMIC DIFFERENTIATION. If a differentiable function y = f(x) is the
product of several factors, the process of differentiation may be simplified by taking the
natural logarithm of the function before differentiating or, what is the same thing, by
using the formula

d du ~
30. &(y)—y& Gy

10. DIFFERENTIATION OF HYPERBOLIC FUNCTIONS

DEFINITIONS OF HYPERBOLIC FUNCTION. For u any real number, except
where noted:

) “_e™ 1 e'+e™
smhu:e € cothu = , (Uu=0)
tanhu e' —e™
e 1 2
coshu:e ¢ sechu = =
coshu e" +e™
sinhu e" —e™ 1 2
tanhu = = - cschu =— = , (Uu=0)
coshu e"+e™ sinhu e" —e™

DIFFERENTIATION FORMULAS. If u is a differentiable function of x,

du d 2 du
31— h hu— 34. —(cothu)=-csch® u—
Ix (sinhu) = cos udx Ix (cothu) = -csc udx
32. &(cosh u) = sinh u% 35. —(sech u) = —sechu tanh u%
33. i(tanh u) = sech? u@ 36. —(csch u) = —cschu coth u@
dx dx dx dx
DEFINITIONS OF INVERSE HYPERBOLIC FUNCTIONS.
sinh™u=In(u++v1+u?),allu coth™u = 1Inu—i, (u?>1)
1++1-u?
cosh™u =In(u++u®-1), (ux) sech‘1u=ln%, (0<u<l)
2
tanh‘lu:%lnfr—u, (u? <1) csch” u—In(i |+|u ] (u=0)
—-u
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Differentiation formulas. If u is a differentiable function of x,

37.

38.

39.

40.

41.

42.

9 (snhtyy=—Lt_d

dx 1+ u2 dx

é%«nm—1m= 1 295,(u>n
1-u

d _ 1 du

&(tanhlu)_1 > dx’ (u2<1)
-u

d _ 1 du

o (coth 1 u)::1 > (u? >1)
—-u

d 1 -1 du

Lsechtuy=——=_=Y  (0<u<1)

dx [ 2 dx
uvl-u

du -0
X

-1
U)= ——— ",
dx U1 +u? @

11. PARAMETRIC REPRESENTATION OF CURVES

PARAMETRIC EQUATIONS. If the coordinates (X, y) of a point P on a curve are

given as functions x = f(u), y = g(u) of a third variable or parameters u, the equations x

= f(u), y = g(u) are called parametric equations of the curve.

Example:

(a) x=cosd, y=4sin’@ are parametric equations, with parameter 6, of the parabola

Ax +y =4, since 4x* +y =4cos’ 0 +4sin’0 =4

(b) x=41t, y=4—t* is another parametric representation, with parameter t, of the

same curve.

v

= *r
= 3v = ir
¢=r -

0 $=0 e
() (b)
Fig. 16-1
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It should be noted that the first set of parametric equations represents only a
portion of the parabola, whereas the second represents the entire curve.

THE FIRST DERIVATIVE & is given by dy _dy/du
dx dx dx/du

2 2
The second derivative d 2’ is given by d 2’ = i(ﬂjd_u
dx dx® duldx) dx

SOLVED PROBLEMS
2

1. Find % and d Z, , given X = @-sin 6,y = 1- cosd
X X

dx dy

2 _1-cosf, -2 =sin@, and dy dy/dé _ sind
do do

dx dx/d@ 1-cosd
d2y_i( sin® jd_@_ cosgp-1 1 1
dx* do\l-cosf) dx (-cosd® 1-cosd  (-cosh’

12. FUNDAMENTAL INTEGRATION FORMULAS

IF F(x) IS A FUNCTION Whose derivative F (x)=f(x) on a certain interval of the x-
axis, then F(x) is called an anti-derivative or indefinite integral of f(x). The indefinite
integral of a given function is not unique; for example, x*, x> + 5, x* — 4 are indefinite

integral of f(x) = 2x since i(x2)=i(x2+5)=i(x2—4):2x. All indefinite
dx dx dx
integrals of f(x) = 2x are then included in x* + C where C, called the constant of

integration, is an arbitrary constant.

The symbol _[f(x)dx is used to indicate that the indefinite integral of f(x) is to be

found. Thus we write j2x dx=x*>+C

FUNDAMENTAL INTEGRATION FORMULAS. A number of the formulas below
follow immediately from the standard differentiation formulas of earlier chapters while
Formula 25, for example, may be checked by showing that

d .u

1 luJa®-u® +1ia’arcsin—+Cp=+a’-u?
u a

Absolute value signs appear in certain of the formulas. For example, we write

d
5. j@ =Inju[+C
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instead of

5(a) jd—”=|nu+c, us>0 5(h). d—u=ln(—u)+C, u<0
u u
and
10. J'tanu du = In|secu|+ C
instead of
10(a) J'tanu du=Insecu+C, all usuch thatsecu>1
10(b) Itanu du=In (—secu)+C, all u such that secu<-1
Fundamental Integration Formulas
1. d—c:( fo) dx =f(x)+C 18. |cscucotudu=-cscu+C
r du 1 u
2. |(u+v)dx= |ludx+ |vdx 19. ==—arctan—+C
J J .[ J-aZ +u2 a a
3. faudx-= aju dx, a any constant 20. jd—u —arcsin 2+C
J [32 _ 2 a
m+1
4 Iumdu= +C, m=-1
m+1
5. [y +c
au
6. |a%du=—+C, a>0,a=1
Ina

8. [snudu=-cosu+cC

9. [cosudu=sinu+cC

10. ftanudu=0n lsecu/+C

11. fcotudu=1In |sin u| + C

12. {secudu=1n lsecu+tanu|+C
13. .cscudu:ln|cscu—cotu|+C
14, [sec? udu=tanu+C

15. fesc2udu=—cotu+C

16. .secutanudu=secu+C
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21. jL = %arc sec §+C

U\/U2 —az

22, [du __ 1 -3, .
Ju2_-a2 2a Ju+a
23, [Ldu _ 1 @+u .

Ja2 _y?2 2a ja-u

24. .Lz In(u+\/u2 +a )+C

'\/u2+a2
du /
. I—zlnu+ u? - a2
Ju? —a?

- . u
26. \/az—uzdu=%u aZ —u? +1a?arcsin—+C
a

25 +C

] 2
27. |Wu? +a?du :%u\/u2 +a2 +%a2 In(u+\/u2 +a2 )+C

28. [Vu? —a2du :%u\/u2 —a? —%az In(u+\/u2 —a? j+C

13. INTEGRATION BY PARTS

INTEGRATION BY PARTS. When u and v are differentiable function of
d(uv)=udv+vdu
u dv =d(uv) — v(du)
() Iu dv=uv-— jv du
To use (i) in effecting a required integration, the given integral must be
separated into two parts, one part being u and the other part, together with dx, being dv.
(For this reason, integration by the use of (i) is called integration by parts.) Two

general rules can be stated:
(a) the part selected as dv must be readily integrable

(b) Iv du must not be more complex than Iu dv

Example 1: Find Jx3exzdx
Take u=x?and dv=e* x dx; then du = 2xdx and v=1e* . Now by the rule

2 2 2 2 2
J'xzeX dx =1 x%e* —_|.xeX dx=1x%e" —-ie* +C
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Example 2: Find Iln(xz +2)dx

Take u = In (x* + 2) and dv = dx; then du=2Xd); and v = x. By the rule.
X2 +
2x? dx 4
In(x? +2)dx = x In(x* +2) — =xIn(x*+2)- || 2— )dx
J( ) (x*+2) J.x2+2 (+2) I( x*+2

=xIn (x> +2) - 2x+ 22 arc tan x//2 +C

REDUCTION FORMULAS. The labour involved in successive applications of
integration by parts to evaluate an integral may be materially reduced by the use of
reduction formulas. In general, a reduction formula yields a new integral of the same
form as the original but with an exponent increased or reduced. A reduction formula
succeeds if ultimately it produces an integral which can be evaluated. Among the
reduction formulas are:

du 1 u 2m-3 du
A [ = 1
) j(aziuz)m az{(Zm—Z)(azJ_ruz)m‘l+2m—2-[(a2iu2)m‘l}’ m=

u(@® +u®)" . 2ma’®
2m+1 2m+1

(B). [(a* +u*)"du = [@ +u*)™du, m=-1/2

(C)-j du :_i u _+2m—3J‘ du L met
(u*-a*»)" a’|@2m-2)u*-a*)""' 2m-2-°@u*-a*)"*

u’-a®)" 2ma’
2m+1 2m+1

(D). [(u*-a*)"du= fw?—a*)""du, m=-1/2

(E). jumea“ du :%u”‘ea“ _n Ium‘leau du
a

sin"fucosu m
+
m

-1,.
F). |sin"udu=- sin™?u du
. | — |
cos™tusinu m
+

G). |cos™u du =
©). | _

-1 J’cosm‘2 u du
m

s~ M+1

sin™ u cos"* u . n-1
m+n m+n

(H). jsinm ucos"udu=- jsinm u cos"?u du

sin™ucos™u m-1,. .., )
=— + Ism ucos"udu, m=-n
m+n m+n

m

. u m
). {n™sinbudu=-—cosbu+— [u™*cosbu du
- | - bj

u™ . m )
J). |In™cosbudu=—-—sinbu—— |u™sin bu du
@. | - bj
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14. TRIGONOMETRIC INTEGRALS

THE FOLLOWING IDENTITIES are employed to find the trigonometric integrals

of this chapter.

1. sin?x+cos?x=1 7. sinx cosy:% lin(x—y)+sin(x+y):

2. 1+tan®x =sec’ x 8. sinxsiny =1 fos(x-y)-cos(x+y)_

3. 1+cot?x = csc® X 9. cosx cosyz% [os(x—y)+cos(x+y):
4 Sin2X=%(1—COSZX)

Ul

10. 1—cosx:2$in2%x
2

cos? X =%(1+cos 2X)
11.1+cosx =2 cosz%x

SinX COSX = %sin 2X
12. 1+sinx =1+ cos(n—X)

SOLVED PROBLEMS

SINES AND COSINES

1

N

w

SN

o1

Isinz X dx = J%(l—cost) dx=1x-1sin 2x+C
.[cosz 3x dx = j%(1+ c0s6x) dx =1 x —Lsin 6x+C
.[sins X dx = J'sin2 X sinx dx = I(l—cos2 X)sin x dx = —cosx +icos® x+C
J'cos3 X dx = J.cos4 X cosx dx =J'(1—sin2 X)? cosx dx
= Icos X dx—ZJ'sin2 X COSX X + J.sin4 X Cosx dx
=sinx—2sin® x+isin®x+C
J'sin2 X cos® x dx = J'sin2 X C0s® X COSX dx =J'sin2 X(L—sin? x) cosx dx

= jsin2 X cosx dx — Isin“ X cosx dx = 1sin® x —Lsin® x+ C
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15. TRIGONOMETRIC SUBSTITUTIONS

AN INTEGRAND, which contains one of the forms va?—b2u?, a2 +b%u?,

vb?u? —a? but no other irrational factor, may be transformed into another involving
trigonometric functions of a new variable as follows:

For Use To obtain
va® —b%u? u=2sinz avl-sin?z =acosz
b
va? +b%u? u=2tanz avl+tan?z =asecz
b
Vb?u? —a? = 2eery avsec’z-1=atan z
b

In each case, integration yields an expression in the variable z. The corresponding

expression in the original variable may be obtained by the use of a right triangle as
shown in the solved problems below.

SOLVED PROBLEMS

. dx
1. Find |————
'|.x2\/4+x2
Let x =2tanz; thendx = 2 sec’zdzand V4 +x? =2secz
_[ ,[ 2sec’zdz Isecz
«/4+x (4tan® z)(2 sec z) tan® z
/ 2
:lj‘sinfzzcoszdz:— 1 +C=— 4+X +C
4 4sin z 4x
2. Find

2
j X dx
VX2 -4
Let x = 2 sec z; then dx = 2 sec z tan z dz and

Nx?—4=2tanz

2 4 2
J' X dx=J' 3€C Z(Zsecztanzdz)=4.fsec32dz
Jx2 _4 2tanz
=2secztan z+2Injsecz+tan z|+C

=1xx° —4+2In‘x+\/x2 —4‘+C
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3.Fdj94x

Let x=3sinz; then dx =3cosz dz and

V9-4x? =3co0sz
I\/9—4x2 3c0sz
YT dx= j

o
X 3sin z

cos’ z
sin z

dz

¢coszdz =3

1—sin’z .
=3|——dz=3|csczdz—-3|sinzdz
'f sin z I j

= 3In|cscz —cot z| +3cosz+C

2
PN ik e “9)(_4X +9—4x% +C

16. INTEGRATION BY PARTIAL FRACTIONS

A POLYNOMIAL IN x is a function of the form apx" + a;x™™* + ... + anaX + a,, Where
the a’s are constants, ap # 0, and n is a positive integer including zero.

If two polynomials of the same degree are equal for all values of the variable, the
coefficients of the like powers of the variable in the two polynomials are equal.

Every polynomial with real coefficients can be expressed (at least, theoretically)
as a product of real linear factors of the form ax + b and real irreducible quadratic factors
of the form ax® + bx + c.

A function F(x)= , Where f(x) and g(x) are polynomials, is called a rational

f(x)
9(x)
fraction.

If the degree of f(x) is less than the degree of g(x), F(x) is called proper;
otherwise. F(x) is called improper.

An improper rational fraction can be expressed as the sum of a polynomial and a

3
i : X
proper rational fraction. Thus, —— =X -

X
x% +1 x> +1
Every proper rational fraction can be expressed (at least, theoretically) as a sum of
simpler fractions (partial fractions) whose denominators are of the form (ax + b)" and
(ax® + bx + ¢)", n being a positive integer. Four cases, depending upon the nature of the
factors of the denominator, arise.
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CASE I. DISTINCT LINEAR FACTORS
To each linear factor ax + b occurring once in the denominator of a proper

rational fraction, there corresponds a single partial fraction of the form , Where A

ax+hb
is a constant to be determined.

CASE Il. REPEATED LINEAR FACTORS
To each linear factor ax + b occurring n times in the denominator of a proper
rational fraction, there corresponds a sum of n partial fractions of the form
A LA 5 .
ax+b (ax+b) (ax+b)"

where the 4 ’s are constants to be determined.

CASE I11. DISTINCT QUADRATIC FACTORS
To each irreducible quadratic factor ax’* + bx + ¢ occurring once in the
denominator of a proper rational fraction, there corresponds a single partial fraction of

Ax+ B

the form —, where A and B are constants to be determined.

ax‘ +bx+c

CASE IV. REPEATED QUADRATIC FACTORS
To each irreducible quadratic factor ax* + bx + c occurring n times in the
denominator of a proper rational fraction, there corresponds a sum of n partial fraction of
the form
A X+ B, N A X+ B, N A X+ B,
ax? +bx+c  (ax’ +bx+c)?  (ax® +bx+c)"

where the 4 ’s and B’s are constants to be determined.

SOLVED PROBLEMS

1. Find [~
X* -4
(a) Factor the denominator: x* — 4 = (x-2)(x+2)
Write 1 A + B and clear of fraction to obtain

P-4 x-2 x+2
1) 1=Ax+2)+B(x-2) or (2) 1=(A+B)x+ (2A-2B)
(b) Determine the constants

General method. Equate coefficients of like powers of x in (2) and solve
simultaneously for the constants. Thus, A+ B =0and 2A-2B =1; A=1, and

B=-1.
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Short method. Substitute in (1) the values x = 2 and x = -2 to obtain 1 =

4A and 1 = -4B; then A=% and B =-%, as before. (Note that the values of x
used are those for which the denomlnator of the partial fractions become 0).
1 1
(c) By either method: ! & 4 and

X2—4 X-2 XxX+2

J'zdx _lgpdx 1pdx | |—2|——In|x+2|+C— In—=
X°—4 4x—24x+24 4

X—2
X+2

+C

5 Find j (x +1)dx
x® +x?
(8) x>+ X% — 6x = x(x — 2)(x + 3). Then 3X+1 AL B L€ and
X*+X°—-6X X X-2 Xx+3
1) x+1=AX-2)(x+3)+Bx(x+3)+Cx(x—2)or
(2) x+1=(A+B+C)x’+ (A +3B—2C)x—6A
(b) General method. Solve simultaneously the system of equation
A+B+C=0, A+3B-2C=1, and -6A=1
To obtain A =-1/6, B = 3/10, and C = -2/15.
Short method. Substitute in (1) the values x = 0, x = 2, and x = -3 to obtain 1 = -
6A or A=-1/6,3 =10B or B =3/10, and -2 = 15C or C = -2/15

x+1dx 1¢dx 3 ¢ dx 2 ¢ dx
© PR 2 o

X3 +x2 67 X E Xx—2 157x+3
1 3 2 x -2
=—=| —In|x-2/——1 3+C=Ih————+C
3. Find j&
X+1
x> —x2—x+ 1= (x+1)(x-1)%. Then 3X+S = A + B __C and

x* —x? —x+1 Xx+1 x-1 (x-1°?
3x+5=A(X— 1)+ B(x + 1)(x — 1) + C (x+1).

For x=-1,2=4A and A=%. Forx=1,8=2C and C = 4. To determine the
remaining constant, use any other value of x, say x=0; forx=0,
5=A-B+C and B=-%. Thus

J- (3x+5) B Idx 1 dXx +4J- dx
—x+1 29x+1 29x-1 (x-1)°
1 1 4
_Eln|x+]4— Eln|x—ﬂ—m+c
=—i+l In— x+1 + C
x-1 2 x-1
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