Session: 15

Course Material: Construction of finite field

Let R be a commutative ring and $p(x) \in R[x]$. We define $I = \{p(x)f(x) | f(x) \in R[x]\}$. It is easy to check that I is an ideal of R[x] and the ideal I is called **ideal generated by** p(x), denoted by $I = \langle p(x) \rangle$.

Example 1:

1. If R is a commutative ring with unity u, then the ideal of R[x] generated by u is $I = \langle u \rangle = \{ u f(x) | f(x) \in R[x] \} = \{ f(x) | f(x) \in R[x] \} = R[x].$

2. If R is a commutative ring and p(x) = x, then the ideal of R[x] generated by p(x) is $I = \langle x \rangle$ = $\{x f(x) | f(x) \in R[x]\}$.

Theorem 1 (Gallian, et.al, 2010) Let *F* be a field and $p(x) \in F[x]$. $\langle p(x) \rangle$ is a maximal ideal in *F*[*x*] if and only if p(x) is irreducible over *F*.

Proof: (\Rightarrow) Suppose $\langle p(x) \rangle$ is a maximal ideal in F[x], then p(x) is neither the zero polynomial nor a unit in F[x], because if p(x) is zero polynomial, then $\langle p(x) \rangle = \{0\}$ is not maximal ideal in F[x] and if p(x) is a unit, then the unity $u \in \langle p(x) \rangle$, imply $\langle p(x) \rangle = F[x]$ that is not maximal ideal in F[x].

Let p(x) = f(x)g(x), then $\langle p(x) \rangle = \langle f(x)g(x) \rangle \subseteq \langle f(x) \rangle \subseteq F[x]$. Thus $\langle p(x) \rangle = \langle f(x) \rangle$ or $\langle f(x) \rangle = F[x]$. In the first case, deg $p(x) = \deg f(x)$, then deg g(x) = 0 and in the second case, deg f(x) = 0. Thus, f(x) is a unit or g(x) is a unit in F[x]. We conclude that p(x) is irreducible over *F*.

(\Leftarrow) Suppose that p(x) is irreducible over *F*. Let *I* be any ideal of *F*[*x*] such that $\langle p(x) \rangle \subseteq I \subseteq F[x]$. Because *F*[*x*] is principle ideal domain (PID), then $I = \langle g(x) \rangle$ for some $g(x) \in F[x]$, then $\langle p(x) \rangle \subseteq I = \langle g(x) \rangle$, then $p(x) \in \langle g(x) \rangle$. Therefore there exists $f(x) \in F[x]$

such that p(x) = g(x)f(x). Because p(x) is irreducible over *F*, then g(x) is a unit or f(x) is a unit in F[x]. For the first case, g(x) is a unit, $I = \langle g(x) \rangle = F[x]$ and for the second case, f(x) is a unit, $\langle p(x) \rangle = \langle g(x) \rangle = I$. We conclude that if $\langle p(x) \rangle \subseteq I \subseteq F[x]$, then $\langle p(x) \rangle = I$ or I = F[x], thus $\langle p(x) \rangle$ is a maximal ideal in F[x]. \Box

Theorem 2 (Gallian, et.al, 2010) If *F* be a field and p(x) is an irreducible polynomial over *F*, then $\frac{F[x]}{\langle p(x) \rangle}$ is a field.

Proof: clear.

A Finite field of p elements where p is prime is \mathbb{Z}_p .

Construction of finite field of p^n elements where p is prime, n > 1:

- 1. Take finite field \mathbb{Z}_{p} .
- **2**. Find an irreducible polynomial p(x) in $\mathbb{Z}_p[x]$ with deg p(x) = n.

3. Construct finite field $\mathbb{Z}_p[x]/\langle p(x)\rangle = \{f(x) + \langle p(x)\rangle | f(x) \in \mathbb{Z}_p[x]\}.$

The finite field $\frac{\mathbb{Z}_p[x]}{\langle p(x) \rangle}$ has pⁿ elements.

Example 2:

1. Construct a field with eight elements.

Answer: $8 = 2^3$, p = 2, n = 3.

- **1.** Take finite field $\mathbb{Z}_2 = \{[0], [1]\}$.
- 2. Find an irreducible polynomial p(x) in $\mathbb{Z}_2[x]$ with deg p(x) = 3. We take $p(x) = x^3 + x + [1]$, and we know that p(x) has no root in \mathbb{Z}_2 . Thus, p(x) is irreducible in $\mathbb{Z}_2[x]$.
- 3. Construct a field $\mathbb{Z}_2[x]$ $\langle x^3 + x + [1] \rangle = \left\{ f(x) + \langle x^3 + x + [1] \rangle | f(x) \in \mathbb{Z}_2[x] \right\}.$

Then
$$\frac{\mathbb{Z}_2[x]}{\langle x^3 + x + [1] \rangle} = \left\{ (a_2 x^2 + a_1 x + a_0) + \langle x^3 + x + [1] \rangle | a_0, a_1, a_2 \in \mathbb{Z}_2 \right\}$$

$$\mathbb{Z}_{2}[x] / \langle x^{3} + x + [1] \rangle = \left\{ [0] + \langle x^{3} + x + [1] \rangle, [1] + \langle x^{3} + x + [1] \rangle, x + \langle x^{3} + x + [1] \rangle, x + [1] + \langle x^{3} + x + [1] \rangle, x + [1] \rangle \right\}$$

$$x^{2} + \langle x^{3} + x + [1] \rangle, x^{2} + [1] + \langle x^{3} + x + [1] \rangle, x^{2} + x + \langle x^{3} + x + [1] \rangle, x^{2} + x + [1] + \langle x^{3} + x + [1] \rangle \rangle$$

To simplify the notation, we write $a_2x^2 + a_1x + a_0$ to simply $a_2x^2 + a_1x + a_0 + \langle x^3 + x + 1 \rangle$.

So we have
$$\mathbb{Z}_2[x]/\langle x^3 + x + [1] \rangle = \{[0], [1], x, x + [1], x^2, x^2 + [1], x^2 + x, x^2 + x + [1]\}$$

2. Construct a field with nine elements.

Answer: $9 = 3^2$, p = 3, n = 2.

1. Take finite field $\mathbb{Z}_{3}=\left\{ [0],[1],[2]\right\} .$

2. Find an irreducible polynomial p(x) in $\mathbb{Z}_3[x]$ with deg p(x) = 2. We take $p(x) = x^2 + [1]$, and we know that p(x) has no root in \mathbb{Z}_3 . Thus, p(x) is irreducible in $\mathbb{Z}_3[x]$.

3. Construct a field
$$\mathbb{Z}_{3}[x]/\langle x^{2}+[1]\rangle = \{f(x)+\langle x^{2}+[1]\rangle | f(x)\in\mathbb{Z}_{3}[x]\}.$$

Then $\mathbb{Z}_{3}[x]/\langle x^{2}+[1]\rangle = \{(a_{1}x+a_{0})+\langle x^{2}+[1]\rangle | a_{0},a_{1}\in\mathbb{Z}_{3}\}$
 $\mathbb{Z}_{3}[x]/\langle x^{2}+[1]\rangle = \{[0],[1],[2],x,x+[1],x+[2],[2]x,[2]x+[1],[2]x+[2]\}$

Exercises 1:

- 1. Fill completely the addition and multiplication tables of example 2 (part 1).
- 2. Construct a field of 4 elements.
- 3. Construct a field of 16 elements.
- 4. Construct a field of 25 elements.
- 5. Construct a field of 27 elements.