Meeting 2:

Materials course: basic properties of ring
Theorem 1. If R is ring, then for every $a, b, c \in R$ the following statements are satisfied.

1. $a z=z a=z$
2. $a(-b)=(-a) b=-(a b)$
3. $(-a)(-b)=a b$
4. $-(a+b)=(-a)+(-b)$
5. $a(b-c)=a b-a c$
6. $(a-b) c=a c-b c$
7. $(-u) a=-a$ where u is unity

Theorem 2. Let R be ring. The ring R has no zero divisor if and only if the canselation law is satisfied in R.
Theorem 3. The finite integral domain is field.

Exercises:

1. Proof Theorem 1, 2 and 3.

Definition 1.
Let R be ring and $a \in R$ and m be a positive integer. We have the following definitions.

1. $\mathrm{ma}=\underbrace{a+a+a+\ldots+a}_{m}$
2. $-m a=\underbrace{(-a)+(-a)+.+.(-a)}_{m}=-(m a)$
3. $0 a=z$

Theorem 4. If R is ring and m, n are integers, then

1. $(m+n) a=m a+n a$
2. $m(a+b)=m a+m b$
3. $m(n a)=(m n) a=n(m a)$

Definition 2. If R is ring, $a \in R$ and m is a positive integer, then we define
$a^{m}=\underbrace{a \cdot a \cdot a . . . a}_{m}$
If $a \in R$ and $a^{2}=a$, then a is called idempotent element of R .
If $a \in R$ and there exists a positive integer n such that $a^{n}=z$, then a is called nilpotent element of R.

Definition 3. Let R be ring. If there exists the least positive integer n such that $n a=z$ for every $a \in R$, then n is called characteristic of ring \mathbf{R}. If there no such number, then the characteristic of \mathbf{R} is 0 or infinite.

Examples.

1. Identify characteristic of ring $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$.
2. Find characteristic of $n \mathbb{Z}$ and \mathbb{Z}_{n}.

Theorem 5. Let $(R,+, \times)$ be an integral domain and $a, b \in R, a \neq z, b \neq z$, then $p(a)=p(b)$ (period of a is equal to period of b under group $(R,+)$.

Theorem 6. Let $(R,+, \times)$ be an integral domain, then characteristic of R is 0 or a positive integer n such that n is period of nonzeero element of R under group $(R,+)$.

Theorem 7. Let $(R,+, \times)$ be an integral domain, then characteristic of R is 0 or a prime number.

Exercises:
Find the characteristic of the given ring:

1. $2 \mathbb{Z}$
2. $\mathbb{Z} \times \mathbb{Z}$
3. $\mathbb{Z}_{3} \times 3 \mathbb{Z}$
4. $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$
5. $\mathbb{Z}_{3} \times \mathbb{Z}_{4}$
6. $\mathbb{Z}_{6} \times \mathbb{Z}_{15}$
7. Let R be commutative ring with unity of characteristic 3 . Compute and simplify $(a+b)^{4}$ for $a, b \in R$.
8. Let R be commutative ring with unity of characteristic 3 . Compute and simplify $(a+b)^{3}$ for $a, b \in R$.
9. Let R be commutative ring with unity of characteristic p where p is prime number. Compute and simplify $(a+b)^{p}$ for $a, b \in R$.
10. Let R be an integral domain of order m, show that characteristic of R divides m.
11. Let F be a field of order 8 , find characteristic of F.
12. Let F be a field of order 2^{n}, find characteristic of F.
13. Let F be a field of order p^{n} where p is prime number, find characteristic of F.

Let R be ring and $a \in R$. If there exists positive integer n such that $a^{n}=\mathrm{Z}$, then a is called a nilpotent element. If $a^{2}=a$, then a is called an idempotent element.
14. Find all nilpotent elements of integral domain R.
15. Find all idempotent elements of integral domain R.
16. Determine all ring elements that are both nilpotents and idempotents.
17. Let R be ring with unity and $a \in R$. Suppose $a^{n}=Z$ for some positive integer n, prove that $1-a$ has multiplicative inverse in R. (hint: compute $(1-a)\left(1+a+a^{2}+\ldots+a^{n-1}\right)$).

