Meeting 2:

Materials course: basic properties of ring

Theorem 1. If R is ring, then for every $a, b, c \in R$ the following statements are satisfied.

1.
$$az = za = z$$

2. $a(-b) = (-a)b = -(ab)$
3. $(-a)(-b) = ab$
4. $-(a+b) = (-a) + (-b)$
5. $a(b-c) = ab - ac$
6. $(a-b)c = ac - bc$
7. $(-u)a = -a$ where *u* is unity

Theorem 2. Let R be ring. The ring R has no zero divisor if and only if the canselation law is satisfied in R. Theorem 3. The finite integral domain is field.

Exercises: 1. Proof Theorem 1, 2 and 3.

Definition 1.

Let R be ring and $a \in R$ and m be a positive integer. We have the following definitions.

1. ma =
$$\underbrace{a + a + a + \dots + a}_{m}$$

2. $-ma = \underbrace{(-a) + (-a) + \dots + .(-a)}_{m} = -(ma)$

3.
$$0a = z$$

Theorem 4. If R is ring and m, n are integers, then

Definition 2. If R is ring, $a \in R$ and m is a positive integer, then we define

$$a^m = \underbrace{a.a.a..a}_{m}$$

If $a \in R$ and $a^2 = a$, then a is called idempotent element of R.

If $a \in R$ and there exists a positive integer n such that $a^n = z$, then a is called nilpotent element of R.

Definition 3. Let R be ring. If there exists the least positive integer n such that na = z for every $a \in R$, then n is called **characteristic of ring R**. If there no such number, then the **characteristic of R** is 0 or infinite.

Examples.

1. Identify characteristic of ring $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$.

2. Find characteristic of $n\mathbb{Z}$ and \mathbb{Z}_n .

Theorem 5. Let $(R, +, \times)$ be an integral domain and $a, b \in R, a \neq z, b \neq z$, then p(a) = p(b) (period of a is equal to period of b under group (R,+).

Theorem 6. Let $(R, +, \times)$ be an integral domain, then characteristic of R is 0 or a positive integer *n* such that *n* is period of nonzeero element of R under group (R,+).

Theorem 7. Let $(R, +, \times)$ be an integral domain, then characteristic of R is 0 or a prime number.

Exercises:

Find the characteristic of the given ring:

- 1. 2Z
- 2. $\mathbb{Z} \times \mathbb{Z}$
- 3. $\mathbb{Z}_3 \times 3\mathbb{Z}$
- 4. $\mathbb{Z}_3 \times \mathbb{Z}_3$
- 5. $\mathbb{Z}_3 \times \mathbb{Z}_4$
- 6. $\mathbb{Z}_6 \times \mathbb{Z}_{15}$
- 7. Let R be commutative ring with unity of characteristic 3. Compute and simplify $(a+b)^4$ for $a, b \in R$.
- 8. Let R be commutative ring with unity of characteristic 3. Compute and simplify $(a+b)^3$ for $a, b \in R$.
- 9. Let R be commutative ring with unity of characteristic p where p is prime number. Compute and simplify $(a+b)^p$ for $a, b \in R$.
- 10. Let R be an integral domain of order m, show that characteristic of R divides m.
- 11. Let ${\sf F}$ be a field of order 8 , find characteristic of ${\sf F}.$
- 12. Let F be a field of order 2^n , find characteristic of F.
- 13. Let F be a field of order p^n where p is prime number, find characteristic of F.

Let R be ring and $a \in R$. If there exists positive integer n such that $a^n = z$, then a is called a **nilpotent element**. If $a^2 = a$, then a is called an **idempotent element**.

- 14. Find all nilpotent elements of integral domain R.
- 15. Find all idempotent elements of integral domain R.
- 16. Determine all ring elements that are both nilpotents and idempotents.
- 17. Let R be ring with unity and $a \in R$. Suppose $a^n = z$ for some positive integer n, prove that 1-a has multiplicative inverse in R. (hint: compute $(1-a)(1+a+a^2+...+a^{n-1})$).