$$
3^{\text {rd }} \text { meeting: }
$$

Divisibility and The Greatest Common Divisor

1. Divisibility

Definition: If a and b are integers with $a \neq 0$, we say that a divides b if there is an integer c such that $\mathrm{b}=\mathrm{ac}$. If a divides b , we say that a is factor of b .

Theorem (Division algorithm): If a and b are integers such that $\mathrm{b}>0$, then there is unique integer q and r such that $\mathrm{a}=\mathrm{bq}+\mathrm{r}$ with $0 \leq r<b$.

2. The greatest common divisor (gcd):

Let a and b be given integers that are not both zero. The greatest common divisor of a nd b, denoted by $\operatorname{gcd}(a, b)$, is positive integer d satisfying the following:
(i). $d \mid a$ and $d \mid b$
(ii). If $c \mid a$ and $c \mid b$, then $c \leq d$.

Theorem: If a and b are integers that are not both zero, then there exist integers x and y such that $\mathrm{ax}+\mathrm{by}=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$.

Two integer a and b, not both of those are zero, are said to relatively prime if $\operatorname{gcd}(a, b)=1$.

Theorem: Two integer a and b, not both of those are zero, are relatively prime if and only if there exist integer x and y such that $a x+b y=1$.

Discussion:

1. Prove that $a \mid b$ and $a\left|c \Rightarrow a^{2}\right| b c$.
2. Prove that if $a \mid b$ and $c \mid d$, then $a c \mid b d$.
3. Is it true that if $a \mid(b-c)$, then $a \mid b$ or $a \mid c$? Explain your answer.
4. Is it true that if $a \mid b c$, then $a \mid b$ or $a \mid c$? Explain your answer.
5. Is it true that if there exist x and y such that $a x+b y=d$, then $d=\operatorname{gcd}(a, b)$? Explain your answer.
6. Is it true that if $(a, b)=d$, then $d \mid a x+b y, \forall x, y \in Z$. Explain your answer.
7. Find integers m and n such that $45 m+75 n=\operatorname{gcd}(45,75)$.
8. Find integers x and y such that $102 x+222 y=\operatorname{gcd}(102,222)$.
9. Find integers k and t such that $51 \mathrm{k}+87 \mathrm{t}=\operatorname{gcd}(51,87)$.
10. Find integers s and x such that $981 s+1234 x=\operatorname{gcd}(981,1234)$.
