1. Mathematical Induction

Theorem: (Principle of Finite Induction)

Let S be a set of positive integer with the following properties:
(a) The integer 1 belongs to S .
(b) Whenever the integer k belongs to S, then the next integer $(k+1)$ must also be in S . Then S is the set of all positive integers.

Prove a proposition using mathematical induction:

Let $\mathrm{p}(\mathrm{n})$ be proposition that true for all positive integer n . The proposition can be proved by mathematical induction using the following steps:
Step 1. $\mathrm{P}(1)$ is true
Step 2. Assume that $p(k)$ is true for positive integer k, then we must show that $p(k+1)$ is true.

If Step 1 and Step 2 are true, then we can conclude that $p(n)$ is true for all positive integer n.

Example 1: Prove that $4+10+16+\ldots+(6 n-2)=n(3 n+1)$ for all positive integer n.

2. Binomial Theorem

If n and k are any positive integer with $0 \leq k \leq n$, then the combination of k objects from n objects, denoted by $\binom{n}{k}$, is

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

The Binomial Theorem: Let x and y be variables and n a positive integer, then

$$
(x+y)^{n}=\sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j}
$$

Example 2: Compute $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}$.

Discussion:

1. Conjecture a formula for A^{n} where $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and prove your conjecture using mathematical induction.
2. Conjecture a formula for $\prod_{j=1}^{n} 2^{j}$ and prove your conjecture using mathematical induction.
3. Compute $3+3.5^{2}+3.5^{4}+\ldots+3.5^{1000}$
4. Find $\binom{n}{0}+\binom{n}{2}+\binom{n}{4}+\ldots$
5. Find $\binom{n}{1}+\binom{n}{3}+\binom{n}{5}+\ldots$
6. Show that $\binom{k}{k}+\binom{k+1}{k}+\binom{k+2}{k}+\ldots+\binom{k+r}{k}=\binom{k+r+1}{k+1}$
7. Conjecture a formula for A^{n} where $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and prove your conjecture using mathematical induction.

Answer:
2. Conjecture a formula for $\prod_{j=1}^{n} 2^{j}$ and prove your conjecture using mathematical induction.

Answer:
3. Compute $3+3.5^{2}+3.5^{4}+\ldots+3.5^{1000}$

Answer:
4. Find $\binom{n}{0}+\binom{n}{2}+\binom{n}{4}+\ldots$

Answer:
5. Find $\binom{n}{1}+\binom{n}{3}+\binom{n}{5}+\ldots$

Answer:
6. Show that $\binom{k}{k}+\binom{k+1}{k}+\binom{k+2}{k}+\ldots+\binom{k+r}{k}=\binom{k+r+1}{k+1}$

Answer:

