CONGRUENCES

Problems:

If today is Monday,

1. What day is the next 8 days?
2. What day is the next 40 days?

This is congruency problems.
Definition 1: Let m be a positive integer. If a and b are integers, then we say that a is congruence to b modulo m if $m \mid(a-b)$.

If a congruence to b modulo m, we write $a \equiv b(\bmod m)$ and
if $m \nmid(a-b)$, we write $a \neq b(\bmod m)$
Examples 1: $2 \equiv 12(\bmod 10)$ since $10 \mid(2-12)$ and $3 \neq 12(\bmod 10)$ because $10 \nmid(3-12)$.
Theorem 1: If a and b are integers and m is positive integer, then $a \equiv b(\bmod m)$ if and only if there exists integer k such that $\mathrm{a}=\mathrm{km}+\mathrm{b}$.

Theorem 2: Let m be positive integer, then the congruence modulo m is equivalence relation on set of integers that is reflexive, symmetric and transitive.

Theorem 2 implies that set of integers is divided into partitions or classes.
Example 2: The relation of congruence modulo 4 on set of integers causes the set of integers is divided into classes:
$[0]=\overline{0}=\{x \in \mathbb{Z} \mid x=0+4 k, k \in \mathbb{Z}\}=\{\ldots,-8,-4,0,4,8, \ldots\}=[4]=[8]=[-4]=[-8]=\ldots$
$[1]=\overline{1}=\{x \in \mathbb{Z} \mid x=1+4 k, k \in \mathbb{Z}\}=\{\ldots,-7,-3,1,5,9, \ldots\}=[-7]=[-3]=[5]=[9]=\ldots$
$[2]=\overline{2}=\{x \in \mathbb{Z} \mid x=2+4 k, k \in \mathbb{Z}\}=\{\ldots,-6,-2,2,6,10, \ldots\}=[-6]=[-2]=[6]=[10]=\ldots$
$[3]=\overline{3}=\{x \in \mathbb{Z} \mid x=3+4 k, k \in \mathbb{Z}\}=\{\ldots,-5,-1,3,7,11, \ldots\}=[-5]=[-1]=[7]=[11]=\ldots$
We have $\mathbb{Z}=[0 \cup[1] \cup[2 \cup][3]$ and $[a] \cap[b]=\varnothing, a \neq b$ with $a, b=0,1,2,3$.

Definition 2: A complete system of residues modulo m is a set of integers such that every integer is congruence modulo m to exactly one integer f the set.

Example 3: $\{45,-9,12,-22,24\}$ is complete system of residues modulo 5 . Why?
$\{0,1,2,3,4\}$ is also complete system of residues modulo 5 .
$\{0,1,2,3,6\}$ is not complete system of residues modulo 5 . Why?

Definition 3: If $a \equiv r(\bmod m)$ with $0 \leq r<m$, then r is called the least residues of a modulo m. And $\{0,1,2, \ldots, m-1\}$ is called set of least residues modulo m.

Example 4: $\{0,1,2,3,4\}$ is set of least residues modulo 5.
$\{45,-9,12,-22,24\}$ is not set of least residues modulo 5 .
Theorem 3: If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{m}$ are integers with $m>0$ such that $a \equiv b(\bmod \mathrm{~m})$, then
(i). $a+c \equiv b+c(\bmod m)$
(ii). $a-c \equiv b-c(\bmod m)$
(iii). $a c \equiv b c(\bmod m)$.

Is it true that if $a c \equiv b c(\bmod \mathbf{m})$, then $a \equiv b(\bmod \mathbf{m})$?
Theorem 4: If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{m}$ are integers with $m>0, \mathrm{~d}=\operatorname{gcd}(\mathrm{c}, \mathrm{m})$ and $a c \equiv b c(\bmod \mathrm{~m})$, then $a \equiv b\left(\bmod \frac{m}{d}\right)$.

Example 5:

1. $18 \equiv 42(\bmod 8)$ and $\operatorname{gcd}(6,8)=2$, then $18 / 6 \equiv 42 / 6\left(\bmod \frac{8}{\operatorname{gcd}(6,8)}\right)$ that is $3 \equiv 7(\bmod 4)$.
2. $10 \equiv 28(\bmod 9)$ and $\operatorname{gcd}(2,9)=1$, then $10 / 2 \equiv 28 / 2\left(\bmod \frac{9}{\operatorname{gcd}(2,9)}\right)$ that is $5 \equiv 14(\bmod 9)$.

Corollary 1: If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{m}$ are integers with $m>0, \operatorname{gcd}(\mathrm{c}, \mathrm{m})=1$ and $a c \equiv b c(\bmod \mathrm{~m})$, then $a \equiv b(\bmod m)$.

Example 6: $42 \equiv 7(\bmod 5)$ and $\operatorname{gcd}(5,7)=1$, then $42 / 7 \equiv 7 / 7(\bmod 5)$ that is $6 \equiv 1(\bmod 5)$.

Theorem 5: If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{m}$ are integers with $m>0, a \equiv b(\bmod \mathrm{~m})$, and $c \equiv d(\bmod \mathrm{~m})$, then:
(i). $a+c \equiv b+d(\bmod m)$
(ii). $a-c \equiv b-d(\bmod m)$
(iii). $a c \equiv b d(\bmod m)$.

Discussions:

1. Prove that if $a \equiv b(\bmod \mathrm{~m})$, then $a^{n} \equiv b^{n}(\bmod \mathrm{~m})$ for every positive integer n .
2. If c is positive integer, show that $a \equiv b(\bmod \mathrm{~m}) \Leftrightarrow a c \equiv b c(\bmod \mathrm{mc})$.
3. Prove that if $a \equiv b(\bmod \mathrm{~m})$ with $d \mid \mathrm{m}$ and $d \mid \mathrm{a}$, then $d \mid \mathrm{b}$.
4. Prove that if $a \equiv b(\bmod \mathrm{~m})$, then $\operatorname{gcd}(\mathrm{a}, \mathrm{m})=\operatorname{gcd}(\mathrm{b}, \mathrm{m})$.
5. If $a \equiv b(\bmod \mathrm{~m})$ with $0 \leq|b-a|<m$, prove that $\mathrm{a}=\mathrm{b}$.
6. If $a \equiv b(\bmod \mathrm{~m})$ and $a \equiv b(\bmod \mathrm{n})$ with $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$, prove that $a \equiv b(\bmod \mathrm{mn})$.
7. Prove that if $a \equiv b(\bmod m)$ and $n \mid \mathrm{m}$, then $a \equiv b(\bmod \mathrm{n})$.
8. Is it true that if $a^{2} \equiv b^{2}(\bmod m)$, then $a \equiv b(\bmod m)$?
9. Find the remainder if
(i). 2^{55} is divided by 7 .
(ii). 41^{75} is divided by 7 .
10. Find the remainder if $\left(1^{5}+2^{5}+3^{5}+\ldots+100^{5}\right.$ is divided by 4 .

B. Applications of Congruence Theory

1. Every integer n is congruence modulo 9 to sum of its digits.
2. Integer n is divisible by 9 if and only if the sum of its digits is divisible by 9 .
3. Integer n is divisible by 3 if and only if the sum of its digits is divisible by 3
4. Integer n is divisible by 2 if and only if the last digits of n is divisible by 2 .
5. Integer n is divisible by 4 if and only if the last two digits of n can be divided by 4 .
6. Integer n is divisible by 8 if and only if the last three digits of n can be divided by 8 .
7. Integer n is divisible by 6 if and only if the integer n can be divided by 2 and 3 .
8. Integer $n=a_{k} a_{k-1} \ldots a_{2} a_{1} a_{0}$ is divisible by 11 if and only if $\left(a_{0}+a_{2}+a_{4}+\ldots\right)-\left(a_{1}+a_{3}+a_{5}+\ldots\right)$ is divisible by11.
9. Suppose that $n=\left(a_{k} a_{k-1} \ldots a_{2} a_{1} a_{0}\right)_{9}$ is written in base 9 . Integer n can be divided by 3 if and only if the last digit a_{0} can be divided by 3.
10. Suppose that $n=\left(a_{k} a_{k-1} \ldots a_{2} a_{1} a_{0}\right)_{9}$ is written in base 9 . Integer n can be divided by 8 if and only if the sum of its digits can be divided by 8 .

Discussions:

1. Is the following integers divisible by $9,2,6,11$?
a. 123454728
b. 1010908899
2. Is the following number divisible by 3 and 8 ?
a. 44783979_{9}
b. 2438765696356_{9}
3. Find integer k such that $52817 \times 3212146=169655 k 15282$.
4. a. Show that $10^{3 n} \equiv 1(\bmod 1001)$ if n is even.
b. . Show that $10^{3 n} \equiv-1(\bmod 1001)$ if n is odd.
5. Suppose $n=a_{k} 10^{k}+a_{k-1} 10^{k-1}+\ldots+a_{2} 10^{2}+a_{1} 10+a_{0}$. Prove that 7,11 , and 13 all divide n if and only if 7,11 , and 13 divide $a_{2} a_{1} a_{0}-a_{5} a_{4} a_{3}+a_{8} a_{7} a_{6}-\ldots$
6. Using (5), is the following integers divisible by $7,11,13$?
a. 1010908899
b. 329453671547
7. If $n=a_{k} a_{k-1} \ldots a_{2} a_{1} a_{0}$ and $m=a_{0} a_{1} a_{2} \ldots a_{k-1} a_{k}$, show that 9 divide n-m.
