System of linear congruence

Theorem 1: Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}$ and m be integers with $m>0$ such that $\operatorname{gcd}(\Delta, m)=1$, where $\Delta=a d-b c$. Then the system of congurences

$$
\begin{aligned}
& a x+b y \equiv e(\bmod m) \\
& c x+d y \equiv f(\bmod m)
\end{aligned}
$$

Has exactly one solution modulo m with $x=\bar{\Delta}(d e-b f)(\bmod m)$ and $y=\bar{\Delta}(a f-c e)(\bmod m)$.
Example: find the solution of the following system of linear congruence:

$$
\begin{aligned}
& x+2 y \equiv 1(\bmod 5) \\
& 2 x+y \equiv 1(\bmod 5)
\end{aligned}
$$

Definition 1: Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be $\mathrm{n} \times \mathrm{k}$ matrices with integer entries. Then \boldsymbol{A} is called congruence to \boldsymbol{B} modulo m if $a_{i j} \equiv b_{i j}(\bmod m), \forall i, j$
and we write $A \equiv B(\bmod m)$

Example:

$$
\left[\begin{array}{cc}
15 & 3 \\
8 & 12
\end{array}\right] \equiv\left[\begin{array}{cc}
4 & 14 \\
-3 & 1
\end{array}\right](\bmod 11) \equiv\left[\begin{array}{cc}
4 & 3 \\
-3 & 1
\end{array}\right](\bmod 11) .
$$

Definition 2: let \boldsymbol{A} and \bar{A} be $\mathrm{n} \times \mathrm{n}$ matrices of integers. If $\bar{A} A \equiv A \underline{A} \equiv I(\bmod m)$, then \bar{A} is called the inverse of A modulo m.

Example:
$\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right]\left[\begin{array}{ll}3 & 4 \\ 1 & 2\end{array}\right] \equiv\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right](\bmod 5)$ and $\left[\begin{array}{ll}3 & 4 \\ 1 & 2\end{array}\right]\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right] \equiv\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right](\bmod 5)$

We call that $\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right]$ is the inverse of $\left[\begin{array}{ll}3 & 4 \\ 1 & 2\end{array}\right]$ modulo 5 .
Theorem 2: Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be matrix of integers with $\operatorname{gcd}(\Delta, m)=1, \Delta=a d-b c$, then $\bar{A}=\bar{\Delta}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$ is the inverse of matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with $\bar{\Delta}$ is the inverse of $\Delta(\bmod m)$.

Example:
$A=\left[\begin{array}{ll}3 & 4 \\ 2 & 5\end{array}\right]$, and $\Delta=a d-b c=15-8=7$. We know that 2 is inverse of 7 modulo 13 , then
$\bar{A}=\bar{\Delta}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right] \equiv 2\left[\begin{array}{cc}5 & -4 \\ -2 & 3\end{array}\right] \equiv\left[\begin{array}{cc}10 & -8 \\ -4 & 6\end{array}\right] \equiv\left[\begin{array}{cc}10 & 5 \\ 9 & 6\end{array}\right](\bmod 13)$.

Note:
We can find inverse of a matrix using adjoint matrix or elementary row operation to the matrix.

Problems:
Find solution of the following system of linear congruence:

FERMAT AND WILSON THEOREMS

Theorem 1: If $\operatorname{gcd}(\mathrm{a}, \mathrm{m})=1$, then the least residuals modulo m for sequence :
$a, 2 a, 3 a, \ldots,(m-1) a$ is the permutation of $1,2,3, \ldots, m-1$.
Example 1: Given $\mathrm{a}=4$ and $\mathrm{m}=9$ and $\operatorname{gcd}(4,9)=1$, then the least residuals modulo 9 for sequence : 4, 2(4), 3(4), 4(4), 5(4), 6(4), 7(4), 8(4) is a permutation of $1,2,3,4,5,6,7,8$.

Check that $4 \equiv 4 \bmod 9), 2(4) \equiv 8(\bmod 9), 3(4)=12 \equiv 3(\bmod 9), 4(4)=16 \equiv 7(\bmod 9), 5(4)=$ $20 \equiv 2(\bmod 9), 6(4)=24 \equiv 6(\bmod 9), 7(4)=28 \equiv 1(\bmod 9), 8(4)=32 \equiv 5(\bmod 9)$.

Theorem 2: (Fermat Theorem) If p is prime integer and $\operatorname{gcd}(\mathrm{a}, \mathrm{p})=1$, then $a^{p-1} \equiv 1(\bmod p)$.
Example 2: take $p=5$ and $a=9$, then using Fermat theorem, $9^{5-1}=9^{4} \equiv 1(\bmod 5)$.
Theorem 3: If p is prime integer, then $a^{p} \equiv a(\bmod p)$ for every integer a .
Example 3: Take $p=5$ and $a=20$, then $20^{5} \equiv 20(\bmod 5)$.

The converse of theorem 3 is
If $a^{p} \nexists a(\bmod p)$ for an integer a , then p is not prime integer.
Example 4: Is integer 117 prime?
Check: take $a=2$, then $2^{117}=2^{7.16+5}$ and $2^{7}=128 \equiv 11(\bmod 117)$,
$2^{117}=2^{7.16+5} \equiv(11)^{16} 2^{5} \bmod (117) \equiv 44(\bmod 117) \not \equiv 2(\bmod 117)$, so 117 is not prime.
Theorem 4: If p and q are difference prime integers such that $a^{p} \equiv a(\bmod q)$ and $a^{q} \equiv a(\bmod p)$, then $a^{p q} \equiv a(\bmod p q)$.

Example 5: Find the remainder if 2^{340} is divided by 341 ?
Answer: $341=11.31$, take $\mathrm{p}=11$ and $\mathrm{q}=31$
$2^{10}=1024=31.33+1 \equiv 1(\bmod 31)$, then $2^{11} \equiv 2(\bmod 31)$
$2^{10}=1024=11.93+1 \equiv 1(\bmod 11)$, then $2^{31}=2^{10.3+1} \equiv 2(\bmod 11)$.
Using Theorem 4: $2^{341} \equiv 2^{11(31)} \equiv 2(\bmod 11.31)=2(\bmod 341)$
Because $\operatorname{gcd}(2,341)=1$, then $2^{340} \equiv 1(\bmod 341)$ so the remainder if 2^{340} is divided by 341 is 1 .

Theorem 5: If p is prime integer, then the congruence $x^{2} \equiv 1(\bmod p)$ has exactly two solutions that are 1 and $\mathrm{p}-1$.

Example 6: The solution of $x^{2} \equiv 1(\bmod 11)$ are 1 and 10 .
Theorem 6: If p is odd prime integer and a^{-1} is solution of $a x \equiv 1(\bmod p)$ with $\mathrm{a}=1,2, \ldots, \mathrm{p}-1$, then
(i). If $a \neq b(\bmod p)$, then $a^{-1} \neq b^{-1}(\bmod p)$.
(ii). If $\mathrm{a}=1$ or $\mathrm{a}=\mathrm{p}-1$ then $a^{-1} \equiv a(\bmod p)$.

Example 7: Take $p=7$, then using Theorem 6, $1^{-1}=1,2^{-1}=4,3^{-1}=5,4^{-1}=2,5^{-1}=3,6^{-1}=6$.
We know that (i). If $a \neq b(\bmod 7)$, then $a^{-1} \neq b^{-1}(\bmod 7)$.
(ii). If $\mathrm{a}=1$ or $\mathrm{a}=\mathrm{p}-1=6$, then $a^{-1} \equiv a(\bmod 7)$.

Theorem 7 (Wilson Theorem): If p is prime integer, then $(p-1)!\equiv-1(\bmod p)$.
Example 8: $10!\equiv-1(\bmod 11)$.

Converse of Theorem 7 is true:

If $(p-1)!\equiv-1(\bmod p)$, then p is prime integer.
Theorem 8: \mathbf{p} is prime integer if and only if $(p-1)!\equiv-1(\bmod p)$.
Theorem 9: If p is odd prime integer, then the congruence $x^{2}+1 \equiv 0(\bmod p)$ has solution if and only if $p \equiv 1(\bmod 4)$.

If p is odd prime integer and the congruence $x^{2}+1 \equiv 0(\bmod p)$ has solution, then the solutions is $\left(\frac{p-1}{2}\right)!(\bmod p)$ and $\left(p-\left(\frac{p-1}{2}\right)!\right)(\bmod p)$.

Example 9: Does the congruence $x^{2}+1 \equiv 0(\bmod 17)$ have solution?

Answer: because $17 \equiv 1(\bmod 4)$, then the congruence has solution and the solutions are $\left(\frac{17-1}{2}\right)!=8!=13(\bmod 17)$ and $17-13=4(\bmod 17)$.

Discussions:

1. Find the remainder if 314^{159} is divided by 7 .
2. Find the remainder if 314^{162} is divided by 163 .
3. Determine the last two digits of 7^{355}.
4. If $\operatorname{gcd}(a, 35)=1$, show that $a^{12} \equiv 1(\bmod 35)$.
5. Show that $a^{21} \equiv a(\bmod 15)$ for every integer a.

6 . Find the remainder if 15 ! Is divided by 17 .
7. Prove that $2(p-3)!+1 \equiv 0(\bmod p)$ for every prime integer $p \geq 5$.
8. Find the remainder if $2(26!)$ is divided by 29 .
9. If p is odd prime, then $2 p \mid\left(2^{2 p-1}-2\right)$.
10. Find the solution of $x^{2} \equiv-1(\bmod 29)$.
11. If a and b are integers that are not divisible by prime p , prove that if $a^{p} \equiv b^{p}(\bmod p)$, then $a \equiv b(\bmod p)$.
12. Prove that if p is odd prime, then $1^{p-1}+2^{p-1}+\ldots+(p-1)^{p-1} \equiv-1(\bmod p)$.
13. Using problem 12 , find the remainder if $1^{6}+2^{6}+3^{6}+4^{6}+5^{6}+6^{6}$ is divided by 7 .

