System of linear congruence

Theorem 1: Let a, b, c, d, e, f and m be integers with m > 0 such that $gcd(\Delta, m) = 1$, where $\Delta = ad - bc$. Then the system of congurences

$$ax + by \equiv e(\mod m)$$
$$cx + dy \equiv f(\mod m)$$

Has exactly one solution modulo m with $x = \overline{\Delta}(de - bf) \pmod{m}$ and $y = \overline{\Delta}(af - ce) \pmod{m}$.

Example: find the solution of the following system of linear congruence:

$$x + 2y \equiv 1 \pmod{5}$$
$$2x + y \equiv 1 \pmod{5}$$

Definition 1: Let $A = (a_{ij})$ and $B = (b_{ij})$ be n x k matrices with integer entries. Then **A** is called congruence to **B** modulo m if $a_{ij} \equiv b_{ij} \pmod{m}$, $\forall i, j$

and we write $A \equiv B \pmod{m}$

Example:

$$\begin{bmatrix} 15 & 3 \\ 8 & 12 \end{bmatrix} \equiv \begin{bmatrix} 4 & 14 \\ -3 & 1 \end{bmatrix} \pmod{11} \equiv \begin{bmatrix} 4 & 3 \\ -3 & 1 \end{bmatrix} \pmod{11}.$$

Definition 2: let **A** and \overline{A} be n x n matrices of integers. If $\overline{A}A \equiv A\underline{A} \equiv I \pmod{m}$, then \overline{A} is called the inverse of A modulo m.

Example:

$$\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix} \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \pmod{5} \text{ and } \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \pmod{5}$$

We call that
$$\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$
 is the inverse of $\begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$ modulo 5.

Theorem 2: Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be matrix of integers with $gcd(\Delta, m) = 1$, $\Delta = ad - bc$, then $\overline{A} = \overline{\Delta} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ is the inverse of matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with $\overline{\Delta}$ is the inverse of $\Delta(\mod m)$.

Example:

$$A = \begin{bmatrix} 3 & 4 \\ 2 & 5 \end{bmatrix}, \text{ and } \Delta = ad - bc = 15 - 8 = 7. \text{ We know that 2 is inverse of 7 modulo 13, then}$$
$$\overline{A} = \overline{\Delta} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \equiv 2 \begin{bmatrix} 5 & -4 \\ -2 & 3 \end{bmatrix} \equiv \begin{bmatrix} 10 & -8 \\ -4 & 6 \end{bmatrix} \equiv \begin{bmatrix} 10 & 5 \\ 9 & 6 \end{bmatrix} \pmod{13}.$$

Note:

We can find inverse of a matrix using adjoint matrix or elementary row operation to the matrix.

Problems:

Find solution of the following system of linear congruence:

FERMAT AND WILSON THEOREMS

Theorem 1: If gcd(a, m) = 1, then the least residuals modulo m for sequence :

a, 2a, 3a, ..., (m-1)a is the permutation of 1, 2, 3, ..., m-1.

Example 1: Given a = 4 and m = 9 and gcd(4, 9) = 1, then the least residuals modulo 9 for sequence : 4, 2(4), 3(4), 4(4), 5(4), 6(4), 7(4), 8(4) is a permutation of 1, 2, 3, 4, 5, 6, 7, 8.

Check that $4 \equiv 4 \mod 9$, $2(4) \equiv 8 \pmod{9}$, $3(4) = 12 \equiv 3 \pmod{9}$, $4(4) = 16 \equiv 7 \pmod{9}$, $5(4) = 20 \equiv 2 \pmod{9}$, $6(4) = 24 \equiv 6 \pmod{9}$, $7(4) = 28 \equiv 1 \pmod{9}$, $8(4) = 32 \equiv 5 \pmod{9}$.

Theorem 2: (Fermat Theorem) If p is prime integer and gcd (a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$.

Example 2: take p = 5 and a = 9, then using Fermat theorem, $9^{5-1} = 9^4 \equiv 1 \pmod{5}$.

Theorem 3: If p is prime integer , then $a^p \equiv a \pmod{p}$ for every integer a.

Example 3: Take p = 5 and a = 20, then $20^5 \equiv 20 \pmod{5}$.

The converse of theorem 3 is

If $a^p \not\equiv a \pmod{p}$ for an integer a, then p is not prime integer.

Example 4: Is integer 117 prime?

Check: take a = 2, then $2^{117} = 2^{7.16+5}$ and $2^7 = 128 \equiv 11 \pmod{117}$, $2^{117} = 2^{7.16+5} \equiv (11)^{16} 2^5 \mod(117) \equiv 44 \pmod{117} \neq 2 \pmod{117}$, so 117 is not prime.

Theorem 4: If p and q are difference prime integers such that $a^p \equiv a \pmod{q}$ and $a^q \equiv a \pmod{p}$, then $a^{pq} \equiv a \pmod{pq}$.

Example 5: Find the remainder if 2^{340} is divided by 341?

Answer: 341 = 11.31, take p = 11 and q = 31

 $2^{10} = 1024 = 31.33 + 1 \equiv 1 \pmod{31}$, then $2^{11} \equiv 2 \pmod{31}$

 $2^{10} = 1024 = 11.93 + 1 \equiv 1 \pmod{11}$, then $2^{31} = 2^{10.3+1} \equiv 2 \pmod{11}$.

Using Theorem 4: $2^{341} \equiv 2^{11(31)} \equiv 2 \pmod{11.31} = 2 \pmod{341}$

Because gcd (2, 341) = 1, then $2^{340} \equiv 1 \pmod{341}$ so the remainder if 2^{340} is divided by 341 is 1.

Theorem 5: If p is prime integer, then the congruence $x^2 \equiv 1 \pmod{p}$ has exactly two solutions that are 1 and p-1.

Example 6: The solution of $x^2 \equiv 1 \pmod{11}$ are 1 and 10.

Theorem 6: If p is odd prime integer and a^{-1} is solution of $ax \equiv 1 \pmod{p}$ with a = 1, 2, ..., p-1, then

(i). If $a \neq b \pmod{p}$, then $a^{-1} \neq b^{-1} \pmod{p}$.

(ii). If a = 1 or a = p-1 then $a^{-1} \equiv a \pmod{p}$.

Example 7: Take p= 7, then using Theorem 6, $1^{-1} = 1$, $2^{-1} = 4$, $3^{-1} = 5$, $4^{-1} = 2$, $5^{-1} = 3$, $6^{-1} = 6$.

We know that (i). If $a \neq b \pmod{7}$, then $a^{-1} \neq b^{-1} \pmod{7}$.

(ii). If a = 1 or a = p-1 = 6, then $a^{-1} \equiv a \pmod{7}$.

Theorem 7 (Wilson Theorem): If p is prime integer, then $(p-1)! \equiv -1 \pmod{p}$.

Example 8: $10! \equiv -1 \pmod{11}$.

Converse of Theorem 7 is true:

If $(p-1)! \equiv -1 \pmod{p}$, then p is prime integer.

Theorem 8: p is prime integer if and only if $(p-1)! \equiv -1 \pmod{p}$.

Theorem 9: If p is odd prime integer, then the congruence $x^2 + 1 \equiv 0 \pmod{p}$ has solution if and only if $p \equiv 1 \pmod{4}$.

If p is odd prime integer and the congruence $x^2 + 1 \equiv 0 \pmod{p}$ has solution, then the solutions

is
$$\left(\frac{p-1}{2}\right)! \pmod{p}$$
 and $\left(p - \left(\frac{p-1}{2}\right)!\right) \pmod{p}$.

Example 9: Does the congruence $x^2 + 1 \equiv 0 \pmod{17}$ have solution?

Answer: because $17 \equiv 1 \pmod{4}$, then the congruence has solution and the solutions are $\left(\frac{17-1}{2}\right)! = 8! = 13 \pmod{17}$ and 17-13 = 4 (mod 17).

Discussions:

- 1. Find the remainder if 314^{159} is divided by 7.
- 2. Find the remainder if 314^{162} is divided by 163.
- 3. Determine the last two digits of 7^{355} .
- 4. If gcd(a, 35) = 1, show that $a^{12} \equiv 1 \pmod{35}$.
- 5. Show that $a^{21} \equiv a \pmod{15}$ for every integer a.
- 6. Find the remainder if 15! Is divided by 17.
- 7. Prove that $2(p-3)!+1 \equiv 0 \pmod{p}$ for every prime integer $p \ge 5$.
- 8. Find the remainder if 2(26!) is divided by 29.
- 9. If p is odd prime, then $2p | (2^{2p-1}-2)$.
- 10. Find the solution of $x^2 \equiv -1 \pmod{29}$.

11. If a and b are integers that are not divisible by prime p, prove that if $a^p \equiv b^p \pmod{p}$, then $a \equiv b \pmod{p}$.

- 12. Prove that if p is odd prime, then $1^{p-1} + 2^{p-1} + ... + (p-1)^{p-1} \equiv -1 \pmod{p}$.
- 13. Using problem 12, find the remainder if $1^6 + 2^6 + 3^6 + 4^6 + 5^6 + 6^6$ is divided by 7.