Meeting 1:

Motivation:

Let \mathbb{Z} be set of all integers. Set \mathbb{Z} with ordinary operations additive (+) and multiplicative (.) has the following properties:

For every $a, b, c \in \mathbb{Z}$
I. (i) $a+b \in \mathbb{Z}$ (closed to additive)
(ii). $(a+b)+c=a+(b+c)$ (associative)
(iii). There is an element 0 in \mathbb{Z} such that $a+0=0+a=a$. The element 0 is called identity element.
(iv). There exists an element $-a$ such that $a+-a=-a+a=0 .(-a$ is called inverse of $a)$.
(v). $\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}$. (commutative)
II. (i). $a b \in \mathbb{Z}$ (closed to multiplicative)
(ii). $(a b) c=a(b c)$ (associative)
III. (i). $a(b+c)=a b+a c$ (left distributive law)
(ii). $(a+b) c=a c+b c$ (right distributive law)

We conclude that
I. $(\mathbb{Z},+)$ is abelian group
II. ($\mathbb{Z},$.$) is semigroup$
III. Left distributive and right distributive laws are hold.

Definition 1(ring):

Let R be a nonempty set. A Ring ($R,+$, .) is set R with two binary operations + and . (called additve and multiplicative) defined on R such that the following axioms are satisfied:
I. ($R,+$) is abelian group. For every $a, b, c \in R$
(i). $(a+b)+c=a+(b+c)$ (associative)
(ii). There is an element 0 in R such that $a+0=0+a=a$. The element 0 is called identity element.
(iii). There exists an element $-a$ such that $a+-a=-a+a=0 .(-a$ is called inverse of $a)$.
(iv). $\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}$. (commutative)
II. (R, .) is semigroup. For every $a, b, c \in R$
(i). $(a b) c=a(b c)$ (associative)
III. Left distributive and right distributive laws are hold. For every $a, b, c \in R$
(i). $a(b+c)=a b+a c$ (left distributive law)
(ii). $(a+b) c=a c+b c$ (right distributive law)

Definition 2:

1. If $(R,+,$.$) is ring, then an identity element under additive operation is called zero element, denoted$ by z.
2. If there exists an element u such that $u \neq z$ and u is identity element under multiplicative operation, then u is called unity.
3. If ring R has unity, then ring R is called ring with unity.
4. If $\mathrm{u}, a \in R$ there exists $a^{-1} \in R$ such that $a a^{-1}=a^{-1} a=u$, then a is called unit.
5. If ring R is commutative under multiplicative operation, then R is called commutative ring.

Definition 3:

1. Let a and b be nonzero elements of ring R such that $a b=z$, then a are called left zero diviso $a n d$ is called right zero divisor. If a is left zero divisor and right zero divisor, then a is called zero divisor.
2. If R is commutative ring with unity and no zero divisor, then R is called integral domain.
3. If R is commutative ring with unity and every nonzero element of R has inverse under multiplicative, then R is called field.

Examples:

1. Set of \mathbb{Z} with ordinary operations additive (+) and multiplicative (.) is a ring.
2. How about $\mathbb{R}, \mathbb{Q}, \mathbb{C}$ with ordinary operations additive (+) and multiplicative (.)?
3. The set $\mathbb{Z}_{4}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$ under additive $\left(+_{4}\right)$ and multiplicative $\left(X_{4}\right)$ modulo 4 is a ring.
4. The set $\mathbb{Z}_{5}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$ under additive $\left(+_{5}\right)$ and multiplicative $\left(\times_{5}\right)$ modulo 5 is a ring.
5. Identify set $Z_{n}=\{\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1}\}$ under additive $\left(+_{n}\right)$ and multiplicative $\left(\times_{n}\right)$ modulo n where n is positive integer. Is $Z_{n}=\{\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1}\}$ ring, integral domain, field? Explain!
6. Identify set $Z_{p}=\{\overline{0}, \overline{1}, \tilde{2}, \ldots, \overline{p-1}\}$ under additive $\left(+_{p}\right)$ and multiplicative $\left({ }_{p}\right)$ modulo p where p is prime number. Is $Z_{p}=\{\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{p-1}\}$ ring, integral domain, field? Explain!
7. Let n be positive integer. Is set $n \mathbb{Z}=\{n k \mid k \in \mathbb{Z}\}$ with ordinary operations additive (+) and multiplicative (.) a ring, integral domain, field?
8. $M=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right\}$ with additive $(+)$ and multiplicative (x) operations on matrix. Is Na ring, integral domain, field? Explain!
9. $N=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right) \right\rvert\, a, b \in \mathbb{R}\right\}$ with additive (+) and multiplicative (x) operations on matrix. Is N a ring, integral domain, field? Explain!
10. $K=\left\{\left.\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right) \right\rvert\, a \in \mathbb{R}\right\}$ with additive (+) and multiplicative (x) operations on matrix. Is K a ring, integral domain, field? Explain!
