
Computer Programming

Basic Control Flow -

Decisions

Adapted from C++ for Everyone and Big C++ by Cay Horstmann, John
Wiley & Sons �

2

Objectives

 To be able to implement decisions using if statements

 To learn how to compare integers, floating-point

numbers, and strings

 To understand the Boolean data type

 To develop strategies for validating user input

3

The if Statement

Decision making

(a necessary thing in non-trivial programs)

The if statement

 allows a program to carry out different actions

 depending on the nature of the data being processed

4

The if Statement

The if statement is used to implement a decision.

 When a condition is fulfilled,

one set of statements is executed.

 Otherwise,

another set of statements is executed.

5

The if Statement

if it’s quicker to the candy mountain,

else

 we go that way

 we’ll go that way

6

The if Statement

The thirteenth

floor!

It’s missing!

Of course floor 13 is not

usually left empty, it is

simply called floor 14.

7

The if Statement

We must write the code to control the elevator.

How can we skip the 13th floor?

We will model a person choosing

a floor by getting input from the user:

 int floor;

 cout << "Floor: ";

 cin >> floor;

8

The if Statement

int actual_floor;

if (floor > 13)

{

 actual_floor = floor - 1;

}

else

{

 actual_floor = floor;

}

If the user inputs 20,
 the program must set the actual floor to 19.

Otherwise,
 we simply use the supplied floor number.

We need to

decrement the input

only under a certain

condition:

9

The if Statement

10

The if Statement

Sometimes, it happens that there is nothing to do in
the else branch of the statement.

So don’t write it.

Here is another way to write this code:

We only need to decrement

when the floor is greater than 13.

We can set actual_floor before testing:

int actual_floor = floor;

if (floor > 13)

{

 actual_floor--;

} // No else needed

11

The if Statement – The

Flowchart

12

The if Statement – A Complete

Elevator Program
#include <iostream>

using namespace std;

int main()

{

 int floor;

 cout << "Floor: ";

 cin >> floor;

 int actual_floor;

 if (floor > 13)

 {

 actual_floor = floor - 1;

 }

 else

 {

 actual_floor = floor;

 }

 cout << "The elevator will travel to the actual floor "

 << actual_floor << endl;

 return 0;

}

13

The if Statement – Brace

Layout
 Making your code easy to read is good practice.

 Lining up braces vertically helps.
 if (floor > 13)

 {

 floor--;

 }

 As long as the ending brace clearly shows what it is closing,
there is no confusion.

Some programmers prefer this style

—it saves a vertical line in the code.

if (floor > 13) {

 floor--;

}

14

The if Statement – Always

Use Braces

 When the body of an if statement consists of

a single statement, you need not use braces:

 if (floor > 13)

 floor--;

However, it is a good idea to always include the braces:

 the braces makes your code easier to read, and

 you are less likely to make errors such as …

15

The if Statement – Common

Error – The Do-nothing Statement

Can you see the error?

 if (floor > 13) ;

 {

 floor--;

 }

ERROR

16

 Block-structured code has the property that nested
statements are indented by one or more levels.

int main()

{

 int floor;

 ...

 if (floor > 13)

 {

 floor--;

 }

 ...

 return 0;

}

0 1 2

Indentation level

The if Statement – Indent

when Nesting

17

The if Statement – Removing

Duplication
if (floor > 13)

{

 actual_floor = floor - 1;

 cout << "Actual floor: " << actual_floor <<

endl;

}

else

{

 actual_floor = floor;

 cout << "Actual floor: " << actual_floor <<

endl;

}

Do you find anything curious in this code?

18

The if Statement – Removing

Duplication

if (floor > 13)

{

 actual_floor = floor - 1;

 }

else

{

 actual_floor = floor;

}

cout << "Actual floor: " << actual_floor << endl;

 You should

remove

 this

duplication.

19

Relational Operators

 Relational operators

 < >=

 > <=

 == !=

 are used to compare numbers and strings.

20

Relational Operators

21

Relational Operators

22

Relational Operators – Some

Notes

 Computer keyboards do not have keys for:

 ≥

 ≤

 ≠

 but these operators:

 >=

 <=

 !=

 look similar (and you can type them).

23

Relational Operators – Some

Notes

The == operator is initially confusing to beginners.

In C++, = already has a meaning, namely assignment

The == operator denotes equality testing:

 floor = 13; // Assign 13 to floor
 if (floor == 13)
 //Test whether floor equals 13

You can compare strings as well:

 if (input == "Quit") ...

24

Relational Operators –
Common Error == vs. =

Furthermore, in C and C++ assignments have values.
The value of the assignment expression floor = 13

is 13.

These two features conspire to make a horrible pitfall:

 if (floor = 13) …

 is legal C++.

25

Relational Operators –
Common Error == vs. =

 You must remember:

 Use == inside tests.

 Use = outside tests.

26

Multiple Alternatives

Multiple if statements can be combined

to evaluate complex decisions.

27

Multiple Alternatives

How would we write code to deal with Richter scale values?

28

Multiple Alternatives

 In this case, there are five branches:

 one each for the four descriptions of damage,

 and one for no destruction.

29

Richter flowchart

30

Multiple Alternatives

if (richter >= 8.0)

{

 cout << "Most structures fall";

}

else if (richter >= 7.0)

{

 cout << "Many buildings destroyed";

}

else if (richter >= 6.0)

{

 cout << "Many buildings considerably damaged, some collapse";

}

else if (richter >= 4.5)

{

 cout << "Damage to poorly constructed buildings";

}

else

{

 cout << "No destruction of buildings";

}

. . .

31

Multiple Alternatives

if (richter >= 8.0)

{

 cout << "Most structures fall";

}

else if (richter >= 7.0)

{

 cout << "Many buildings destroyed";

}

else if (richter >= 6.0)

{

 cout << "Many buildings considerably damaged, some collapse";

}

else if (richter >= 4.5)

{

 cout << "Damage to poorly constructed buildings";

}

else

{

 cout << "No destruction of buildings";

}

. . .

If a test is false,

32

Multiple Alternatives

if ()

{

 cout << "Most structures fall";

}

else if (richter >= 7.0)

{

 cout << "Many buildings destroyed";

}

else if (richter >= 6.0)

{

 cout << "Many buildings considerably damaged, some collapse";

}

else if (richter >= 4.5)

{

 cout << "Damage to poorly constructed buildings";

}

else

{

 cout << "No destruction of buildings";

}

. . .

If a test is false, false

33

Multiple Alternatives

if (richter >= 8.0)

{

 cout << "Most structures fall";

}

else if (richter >= 7.0)

{

 cout << "Many buildings destroyed";

}

else if (richter >= 6.0)

{

 cout << "Many buildings considerably damaged, some collapse";

}

else if (richter >= 4.5)

{

 cout << "Damage to poorly constructed buildings";

}

else

{

 cout << "No destruction of buildings";

}

. . .

If a test is false,

that block is skipped

34

Multiple Alternatives

if (richter >= 8.0)

{

 cout << "Most structures fall";

}

else if (richter >= 7.0)

{

 cout << "Many buildings destroyed";

}

else if (richter >= 6.0)

{

 cout << "Many buildings considerably damaged, some collapse";

}

else if (richter >= 4.5)

{

 cout << "Damage to poorly constructed buildings";

}

else

{

 cout << "No destruction of buildings";

}

. . .

If a test is false,

that block is skipped and

the next test is made.

35

Multiple Alternatives

if (richter >= 8.0)

{

 cout << "Most structures fall";

}

else if (richter >= 7.0)

{

 cout << "Many buildings destroyed";

}

else if (richter >= 6.0)

{

 cout << "Many buildings considerably damaged, some collapse";

}

else if (richter >= 4.5)

{

 cout << "Damage to poorly constructed buildings";

}

else

{

 cout << "No destruction of buildings";

}

. . .

As soon as one of the

four tests succeeds,

36

Multiple Alternatives

if (richter >= 8.0)

{

 cout << "Most structures fall";

}

else if ()

{

 cout << "Many buildings destroyed";

}

else if (richter >= 6.0)

{

 cout << "Many buildings considerably damaged, some collapse";

}

else if (richter >= 4.5)

{

 cout << "Damage to poorly constructed buildings";

}

else

{

 cout << "No destruction of buildings";

}

. . .

As soon as one of the

four tests succeeds,

true

37

Multiple Alternatives

if (richter >= 8.0)

{

 cout << "Most structures fall";

}

else if (richter >= 7.0)

{

 cout << "Many buildings destroyed";

}

else if (richter >= 6.0)

{

 cout << "Many buildings considerably damaged, some collapse";

}

else if (richter >= 4.5)

{

 cout << "Damage to poorly constructed buildings";

}

else

{

 cout << "No destruction of buildings";

}

. . .

As soon as one of the

four tests succeeds,

that block is executed,

displaying the result,

38

Multiple Alternatives

if (richter >= 8.0)

{

 cout << "Most structures fall";

}

else if (richter >= 7.0)

{

 cout << "Many buildings destroyed";

}

else if (richter >= 6.0)

{

 cout << "Many buildings considerably damaged, some collapse";

}

else if (richter >= 4.5)

{

 cout << "Damage to poorly constructed buildings";

}

else

{

 cout << "No destruction of buildings";

}

. . .

As soon as one of the

four tests succeeds,

that block is executed,

displaying the result,

and no further tests

are attempted.

39

Multiple Alternatives – Wrong

Order of Tests

 Because of this execution order,

when using multiple if statements,

pay attention to the order of the conditions.

40

Multiple Alternatives – Wrong

Order of Tests

if (richter >= 4.5) // Tests in wrong order

{

 cout << "Damage to poorly constructed buildings";

}

else if (richter >= 6.0)

{

 cout << "Many buildings considerably damaged, some collapse";

}

else if (richter >= 7.0)

{

 cout << "Many buildings destroyed";

}

else if (richter >= 8.0)

{

 cout << "Most structures fall";

}

. . .

Suppose the value
of richter is 7.1,

this test is true!

and that block is

executed (Oh no!),

41

The switch Statement

 To implement sequence of if/else that compares

a value against several constant alternatives.

 Every branch of switch must be terminated by a
break instruction.

 If missing, execution falls through the next branch.

 All branches test the same value.

 The controlling expression switch must

always return either bool value, one of the

integer data types or a character.

42

The switch Statement

int digit;

…

switch(digit)

{

 case 1: digit_name = “one”; break;

 case 2: digit_name = “two”; break;

 case 3: digit_name = “three”; break;

 default: digit_name = “”; break;

}

43

Nested Branches

It is often necessary to include an if statement inside

another.

Such an arrangement is called a nested set of

statements.

44

Nested Branches – Taxes

Tax brackets for single filers:

 from $0 to $32,000

 above $32,000

then tax depends on income

Tax brackets for married filers:

 from $0 to $64,000

 above $64,000

then tax depends on income

45

Nested Branches – Taxes

 …a different nested if for using their figures.

46

Hand Tracing/Desk Checking

A very useful technique for understanding whether a

program works correctly is called hand-tracing.

You simulate the program’s activity on a sheet of paper.

You can use this method with pseudocode or C++ code.

47

 double total_tax = tax1 + tax2;

 cout << "The tax is $" << total_tax << endl;

 return 0;

}

Hand Tracing

48

When an if statement is nested inside another if

statement, the following error may occur.

Can you find the problem with the following?

double shipping_charge = 5.00; //$5 inside continental U.S.

if (country == "USA")

 if (state == "HI")

 shipping_charge = 10.00; // Hawaii is more expensive

else

 shipping_charge = 20.00; // As are foreign shipments

The Dangling else Problem

 // Pitfall!

49

The indentation level seems to suggest that the else is

grouped with the test country == "USA".

Unfortunately, that is not the case.
The compiler ignores all indentation and matches the else

with the preceding if.

double shipping_charge = 5.00; // $5 inside continental U.S.

if (country == "USA")

 if (state == "HI")

 shipping_charge = 10.00; // Hawaii is more expensive

else

 shipping_charge = 20.00; // As are foreign shipments

The Dangling else Problem

50

So, is there a solution to the dangling else problem.

Of, course.

You can put one statement in a block. (Aha!)

The Dangling else Problem

– The Solution

51

double shipping_charge = 5.00;

 // $5 inside continental

U.S.

if (country == "USA")

{

 if (state == "HI")

 shipping_charge = 10.00;

 // Hawaii is more expensive

}

else

 shipping_charge = 20.00;

 // As are foreign shipments

The Dangling else Problem –

The Solution

52

Boolean Variables and

Operators

 Sometimes you need to evaluate a logical

condition in one part of a program and use it

elsewhere.

 To store a condition that can be true or false,

you use a Boolean variable.

53

Boolean Variables and

Operators

Two values, eh?

like “yes” and “no”

Boolean variables

are named after

the mathematician

George Boole.

54

Boolean Variables and

Operators
 In C++, the bool data type represents the

Boolean type.

 Variables of type bool can hold exactly two
values, denoted false and true.

 These values are not strings.

 There values are definitely not integers;

 they are special values, just for Boolean variables.

55

Boolean Variables

Here is a definition of a Boolean variable, initialized to
false:

bool failed = false;

It can be set by an intervening statement so that you can

use the value later in your program to make a decision:

// Only executed if failed has

// been set to true

if (failed)

{

 ...

}

56

Boolean Operators

At this geyser in Iceland, you can see ice, liquid water, and steam.

57

Boolean Operators

 Suppose you need to write a program that
processes temperature values, and you want to
test whether a given temperature corresponds to
liquid water.

 At sea level, water freezes at 0 degrees
Celsius and boils at 100 degrees.

 Water is liquid if the temperature is greater than
zero and less than 100.

 This not a simple test condition.

58

Boolean Operators

 When you make complex decisions, you often
need to combine Boolean values.

 An operator that combines Boolean conditions is
called a Boolean operator.

 Boolean operators take one or two Boolean
values or expressions and combine them into a
resultant Boolean value.

59

The Boolean Operator && (and)

 In C++, the && operator (called and) yields true only
when both conditions are true.

 if (temp > 0 && temp < 100)

 {

 cout << "Liquid";

 }

 If temp is within the range, then both the left-hand side
and the right-hand side are true, making the whole
expression’s value true.

 In all other cases, the whole expression’s value is
false.

60

The Boolean Operator || (or)

 The || operator (called or) yields the result true if at

least one of the conditions is true.

 This is written as two adjacent vertical bar symbols.

 if (temp <= 0 || temp >= 100)

 {

 cout << "Not liquid";

 }

 If either of the expression is true,

the whole expression is true.

 The only way “Not liquid” won’t appear is if both of the
expressions are false.

61

The Boolean Operator ! (not)

 Sometimes you need to invert a condition with the logical

not operator.

 The ! operator takes a single condition and evaluates to

true if that condition is false and to false if the

condition is true.

 if (!frozen) { cout << "Not frozen"; }

 “Not frozen” will be written only when frozen contains the
value false.

 !false is true.

62

Boolean Operators

This information is traditionally collected into a table
called a truth table:

where A and B denote bool variables or Boolean
expressions.

63

Boolean Operators – Some

Examples

64

Boolean Operators – Some

Examples

65

Combining Multiple Relational

Operators

 Consider the expression

 if (0 <= temp <= 100)…

 This looks just like the mathematical test:

 0 ≤ temp ≤ 100

 Unfortunately, it is not.

66

Combining Multiple Relational

Operators

 if (0 <= temp <= 100)…

 The first half, 0 <= temp, is a test.

 The outcome true or false,

depending on the value of temp.

67

Combining Multiple Relational

Operators

 if (<= 100)…

 The outcome of that test (true or false) is then

compared against 100.

 This seems to make no sense.

 Can one compare truth values and floating-point numbers?

false

true

68

Combining Multiple Relational

Operators

 if (<= 100)…

 Is true larger than 100 or not?

false

true

69

Combining Multiple Relational

Operators

 if (<= 100)…

 Unfortunately, to stay compatible with the C language,
C++ converts false to 0 and true to 1.

 0

 1

70

Combining Multiple Relational

Operators

 if (<= 100)…

 Unfortunately, to stay compatible with the C language,
C++ converts false to 0 and true to 1.

 Therefore, the expression will always evaluate to true.

 0

 1

71

Combining Multiple Relational

Operators
Another common error, along the same lines, is to write

 if (x && y > 0) ... // Error

instead of

 if (x > 0 && y > 0) ...//correct

 (x and y are ints)

72

An && or an ||?

 It is quite common that the individual conditions

are nicely set apart in a bulleted list, but with little

indication of how they should be combined.

 Our tax code is a good example of this.

73

An && or an ||?

Consider these instructions for filing a tax return.

You are of single filing status if any one of the following is true:
• You were never married.

• You were legally separated or divorced on the last day of the tax year.

• You were widowed, and did not remarry.

Is this an && or an || situation?

Since the test passes if any one of the conditions is

true, you must combine the conditions with the or

operator.

74

An && or an ||?

Elsewhere, the same instructions:

You may use the status of married filing jointl

if all five of the following conditions are true:
• Your spouse died less than two years ago and you did not remarry.

• You have a child whom you can claim as dependent.

• That child lived in your home for all of the tax year.

• You paid over half the cost of keeping up your home for this child.

• You filed a joint return with your spouse the year he or she died.

&& or an ||?

Because all of the conditions must be true for the test

to pass, you must combine them with an and.

75

Input Validation with if

Statements

You, the C++ programmer, doing Quality Assurance

(by hand!)

77

Input Validation with if

Statements

 Assume that the elevator panel has buttons
labeled 1 through 20 (but not 13!).

 The following are illegal inputs:
 The number 13

 Zero or a negative number

 A number larger than 20

 A value that is not a sequence of digits, such as five

 In each of these cases, we will want to give
an error message and exit the program.

78

Input Validation with if

Statements
It is simple to guard against an input of 13:

if (floor == 13)

{

 cout << "Error: "

 << " There is no thirteenth floor."

 << endl;

 return 1;

}

79

Input Validation with if

Statements

 The statement:

 return 1;

 immediately exits the main function and therefore

terminates the program.

 It is a convention to return with the value 0 if the

program completes normally, and with a non-zero

value when an error is encountered.

80

Input Validation with if

Statements
 To ensure that the user doesn’t enter a number

outside the valid range:

if (floor <= 0 || floor > 20)

{

 cout << "Error: "

 << " The floor must be between 1 and 20."

 << endl;

 return 1;

}

81

Input Validation with if

Statements

 Dealing with input that is not a valid integer is a

more difficult problem.

 What if the user does not type a number in

response to the prompt?

 ‘F’ ‘o’ ‘u’ ‘r’ is not an integer response.

82

Input Validation with if

Statements

 When

 cin >> floor;

 is executed, and the user types in a bad input, the
integer variable floor is not set.

 Instead, the input stream cin is set to a failed state.

83

Input Validation with if

Statements

 You can call the fail member function
to test for that failed state.

 So you can test for bad user input this way:

if (cin.fail())

{

 cout << "Error: Not an integer." <<

endl;

 return 1;

}

84

Chapter Summary

1. The if statement allows a program to carry out different

actions depending on the nature of the data to be processed.

2. Relational operators (< <= > >= ==!=) are used to

compare numbers and strings.

3. Multiple if statements can be combined to evaluate complex

decisions.F

4. When using multiple if statements, pay attention to the order

of the conditions.

5. The Boolean type bool has two values, false and true.

6. C++ has two Boolean operators that combine conditions: &&

(and) and || (or).

7. To invert a condition, use the ! (not) operator.

8. Use the fail function to test whether stream input has failed.

