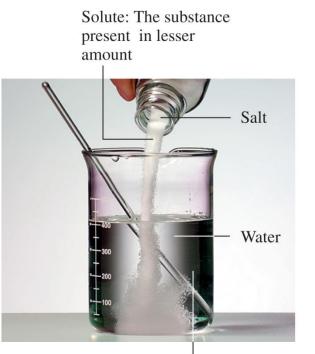

## **Chapter 8** Solutions

#### Disampaikan oleh : Dr. Sri Handayani 2013


### 8.1 Solutions

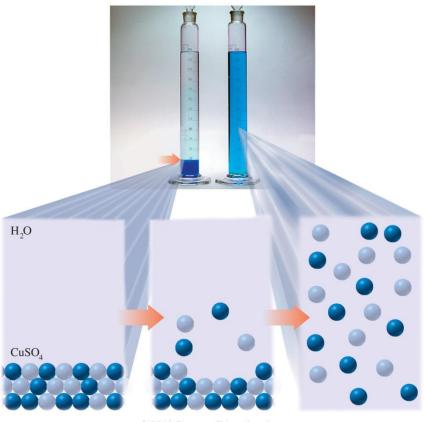


# **Solutions: Solute and Solvent**

#### **Solutions**

- are homogeneous mixtures of two or more substances
- consist of a solvent and one or more solutes




Solvent: The substance present in greater amount © 2010 Pearson Education, Inc.

Copyright © 2010 Pearson Education, Inc.

# **Nature of Solutes in Solutions**

### Solutes

- spread evenly throughout the solution
- cannot be separated by filtration
- can be separated by evaporation
- are not visible but can give a color to the solution



© 2010 Pearson Education, Inc.

# **Examples of Solutions**

 The solute and solvent in a solution can be a solid, liquid, and/or a gas.

| Туре               | Example            | Primary Solute          | Solvent          |
|--------------------|--------------------|-------------------------|------------------|
| Gas Solutions      |                    |                         |                  |
| Gas in a gas       | Air                | Oxygen (gas)            | Nitrogen (gas)   |
| Liquid Solutions   |                    |                         |                  |
| Gas in a liquid    | Soda water         | Carbon dioxide (gas)    | Water (liquid)   |
|                    | Household ammonia  | Ammonia (gas)           | Water (liquid)   |
| Liquid in a liquid | Vinegar            | Acetic acid (liquid)    | Water (liquid)   |
| Solid in a liquid  | Seawater           | Sodium chloride (solid) | Water (liquid)   |
|                    | Tincture of iodine | Iodine (solid)          | Ethanol (liquid) |
| Solid Solutions    |                    |                         |                  |
| Liquid in a solid  | Dental amalgam     | Mercury (liquid)        | Silver (solid)   |
| Solid in a solid   | Brass              | Zinc (solid)            | Copper (solid)   |
|                    | Steel              | Carbon (solid)          | Iron (solid)     |

#### TABLE 8.1 Some Examples of Solutions

© 2010 Pearson Education, Inc.

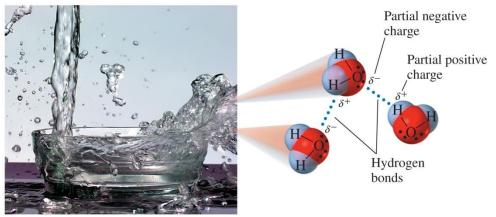
Copyright © 2010 Pearson Education, Inc.

# **Learning Check**

Identify the solute in each of the following solutions:

- A. 2 g sugar (1) and 100 mL water (2)
- B. 60.0 mL of ethyl alcohol (1) and 30.0 mL of methyl alcohol (2)
- C. 55.0 mL water (1) and 1.50 g NaCl (2)
- D. Air: 200 mL  $O_2(1)$  and 800 mL  $N_2(2)$

# **Solution**


Identify the solute in each of the following solutions:

- A. sugar (1)
- B. methyl alcohol (2)
- C. NaCl (2)
- D. O<sub>2</sub>(1)



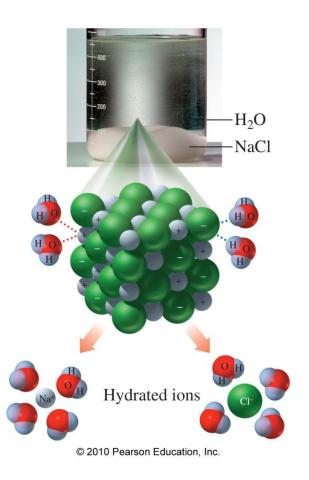
#### Water

- is the most common solvent
- is a polar molecule
- forms hydrogen bonds between the hydrogen atom in one molecule and the oxygen atom in a different water molecule



© 2010 Pearson Education, Inc.

# **Combinations of Solutes and Solvents in Solutions**


| TABLE 8.3 | Possible Combinat   | ions of Solutes ar | nd Solvents             |  |
|-----------|---------------------|--------------------|-------------------------|--|
| Solutio   | Solutions Will Form |                    | Solutions Will Not Form |  |
| Solute    | Solvent             | Solute             | Solvent                 |  |
| Polar     | Polar               | Polar              | Nonpolar                |  |
| Nonpolar  | Nonpolar            | Nonpolar           | Polar                   |  |

© 2010 Pearson Education, Inc.

# **Formation of a Solution**

#### Na<sup>+</sup> and Cl<sup>-</sup> ions

- on the surface of a NaCl crystal are attracted to polar water molecules
- are hydrated in solution by many H<sub>2</sub>O molecules surrounding each ion



# **Equations for Solution Formation**

When NaCl(s) dissolves in water, the reaction can be written as

H<sub>2</sub>O NaCl(s) \_\_\_\_\_

 $Na^+(aq) + Cl^-(aq)$ 

solid

separation of ions

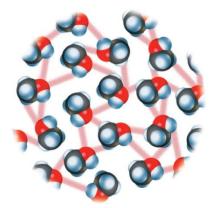
## **Learning Check**

Solid LiCl is added to water. It dissolves because:

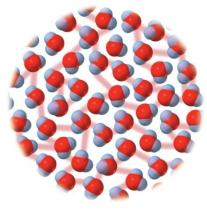
- A. The Li<sup>+</sup> ions are attracted to the
  - 1) oxygen atom ( $\delta$ ) of water.
  - 2) hydrogen atom ( $\delta^+$ ) of water.
- B. The Cl<sup>-</sup> ions are attracted to the
  1) oxygen atom (δ<sup>-</sup>) of water.
  2) hydrogen atom (δ<sup>+</sup>) of water.

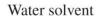
## **Solution**

Solid LiCl is added to water. It dissolves because:

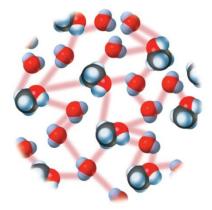

- A. The Li<sup>+</sup> ions are attracted to the
  - 1) oxygen atom ( $\delta$ -) of water.
- B. The Cl<sup>-</sup> ions are attracted to the 2) hydrogen atom ( $\delta^+$ ) of water.

# Like Dissolves Like


Two substances form a solution

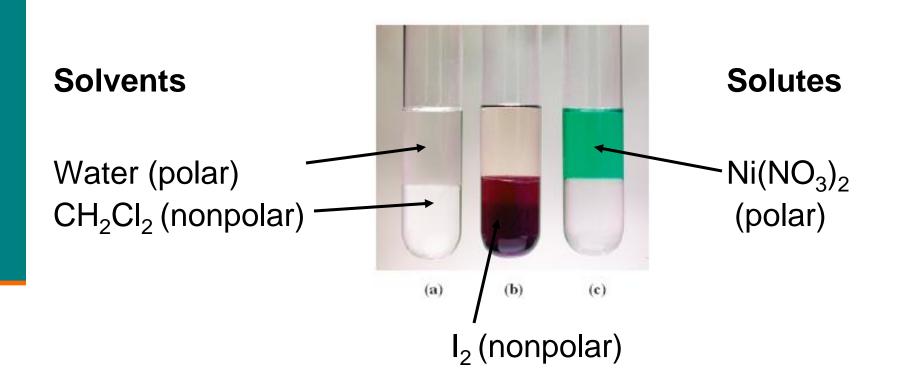

- when there is an attraction between the particles of the solute and solvent
- when a polar solvent (such as water) dissolves polar solutes (such as sugar) and/or ionic solutes (such as NaCl)
- when a nonpolar solvent such as hexane (C<sub>6</sub>H<sub>14</sub>) dissolves nonpolar solutes such as oil or grease

## Water and a Polar Solute








© 2010 Pearson Education, Inc.



Methanol-water solution with hydrogen bonding

## **Like Dissolves Like**



# **Learning Check**

Will each of the following solutes dissolve in water? Why or why not?

- 1) Na<sub>2</sub>SO<sub>4</sub>
- 2) gasoline (nonpolar)
- 3) I<sub>2</sub>
- 4) HCI

# **Solution**

Will each of the following solutes dissolve in water? Why or why not?

Na<sub>2</sub>SO<sub>4</sub>
 Yes. The solute is ionic.
 gasoline
 No. The solute is nonpolar.
 I<sub>2</sub>
 No. The solute is nonpolar.
 HCI
 Yes. The solute is polar.

Most polar and ionic solutes dissolve in water because water is a polar solvent.