KINETIKA KIMIA

LAJU DAN MEKANISME DALAM REAKSI KIMIA

Disampaikan oleh : Dr. Sri Handayani 2013

Pendahuluan

- Perubahan kimia secara sederhana ditulis dalam persamaan reaksi dengan koefisien seimbang
- Namun persamaan reaksi tidak dapat menjawab 3 isu penting
 - 1. Seberapa cepat reaksi berlangsung
 - 2. Bagaimana konsentrasi reaktan dan produk saat reaksi selesai
 - 3. Apakah reaksi berjalan dengan sendirinya dan melepaskan energi, ataukah ia memerlukan energi untuk bereaksi?

Pendahuluan lanjutan

- Kinetika kimia adalah studi tentang laju reaksi, perubahan konsentrasi reaktan (atau produk) sebagai fungsi dari waktu
- Reaksi dapat berlangsung dengan laju yang bervariasi, ada yang serta merta, perlu cukup waktu (pembakaran) atau waktu yang sangat lama seperti penuaan, pembentukan batubara dan beberapa reaksi peluruhan radioaktif

Faktor yang Mempengaruhi Laju Reaksi

- Pada kondisi tertentu masingmasing reaksi memiliki karakteristik laju masing-masing yang ditentukan oleh sifat kimia reaktan
- o Pada suhu kamar:

$$H_2(g) + F_2(g) \rightarrow 2HF(g)$$
 sangat cepat $3H_2(g) + N_2(g) \rightarrow 2NH_3(g)$ sangat lambat

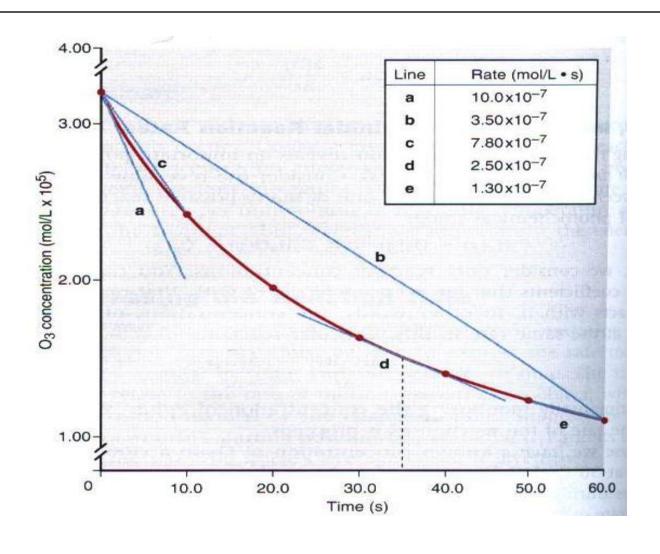
Faktor yang Mempengaruhi Laju Reaksi

- Konsentrasi: molekul-molekul harus bertumbukan agar terjadi reaksi dalam konteks ini laju reaksi proporsional dengan konsentrasi reaktan
- Keadaan fisik: molekul-molekul harus bercampur agar dapat bertumbukan
- Temperatur: molekul harus bertumbukan dengan energi yang cukup untuk bereaksi

Mengekspresikan Laju Reaksi

Laju Gerak =
$$\frac{\text{Perubahan posisi}}{\text{Perubahan waktu}} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$$

Laju reaksi
$$= \frac{\text{Perubahan konsentrasi A}}{\text{Perubahan waktu}}$$
$$= -\frac{\text{Konst A}_2 - \text{Konst A}_1}{t_2 - t_1} = -\frac{\Delta(\text{Konst A})}{\Delta t}$$


$$Laju = -\frac{\Delta \mathbf{A}}{\Delta t} = \frac{\Delta \mathbf{B}}{\Delta t}$$

Laju Reaksi Rerata, Instan dan Awal

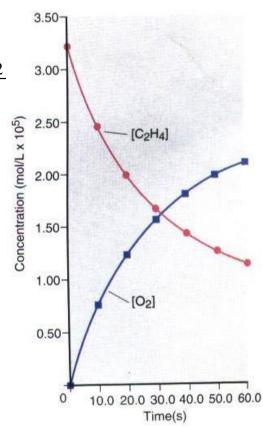
 $C_2H_4(g) + O_3(g) \Leftrightarrow C_2H_4O(g) + O_2(g)$ Konsentrasi O_3 pada beberapa waktu dalam Reaksinya dengan C_2H_4 pada 303 K

Waktu (s)	Konsentrasi O ₃
	(mol/L)
0,0	3,20 x 10 ⁻⁵
10,0	2,42 x 10 ⁻⁵
20,0	1,95 x 10 ⁻⁵
30,0	1,63 x 10 ⁻⁵
40,0	1,40 x 10 ⁻⁵
50,0	1,23 x 10 ⁻⁵
60,0	$1,10 \times 10^{-5}$

Plot Konsentrasi vs Waktu

Ekspresi Laju dalam Konsentrasi Reaktan dan Produk

$$Laju = -\frac{\Delta \left[\sum_{2} H_{4} \right]^{-}}{\Delta t} = -\frac{\Delta \left[\sum_{3} \right]^{-}}{\Delta t} + \frac{\Delta \left[\sum_{2} H_{4} O \right]^{-}}{\Delta t} + \frac{\Delta \left[\sum_{2} H_{4} O \right]^{-}}{\Delta t}$$


Untuk reaksi hidrogen dan iodine membentuk HI

$$H_2(g) + I_2(g) \rightarrow 2HI(g)$$

$$Laju = -\frac{\Delta H_2}{\Delta t} = -\frac{\Delta L_2}{\Delta t} = +\frac{1}{2} \frac{\Delta H_1}{\Delta t}$$

$$Laju = \frac{\Delta H_1}{\Delta t} = -2 \frac{\Delta H_2}{\Delta t} = -2 \frac{\Delta L_2}{\Delta t}$$

$$Laju = \frac{\Delta HI}{\Delta t} = -2 \frac{\Delta H_2}{\Delta t} = -2 \frac{\Delta L_2}{\Delta t}$$

atau

Soal Latihan

Karena menghasilkan produk gas non polusi, hidrogen sebagai bahan bakar roket dan sumber energi masa depan:

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$$

- Tuliskan laju reaksi ini dalam suku perubahan [H₂], [O₂] dan [H₂O] terhadap waktu
- Saat O₂ turun pada 0,23 mol/L.s berapa kenaikan terbentuknya H₂O?

Persamaan Laju dan komponennya

O Untuk reaksi umum:

$$aA + bB + ... \rightarrow cC + dD + ...$$

Persamaan lajunya berbentuk

$$Laju = k[A]^m[B]^n$$

- Konstanta proporsionalitas k disebut juga konstanta laju dan karakteristik untuk reaksi pada suhu tertentu serta tidak berubah saat reaksi terjadi
- m dan n disebut orde reaksi didefinisikan sejauhmana laju reaksi dipengaruhi oleh konsentrasi masing-masing reaktan
- Komponen persamaan laju: laju, orde reaksi dan konstanta laju harus ditentukan berdasarkan eksperimen bukan berdasarkan persamaan stoikiometris yang seimbang

Menentukan Laju Awal

- Metoda Spektrometri
- Metoda Konduktometri
- Metoda Manometri
- Metoda Penentuan kimia secara langsung

Terminologi Orde Reaksi

- $NO(g) + O_3(g) \rightarrow NO_2(g) + O_2(g)$
- Persamaan laju hasil eksperimen
 Laju = k[NO][O₃]
- Reaksi dikatakan orde satu terhadap NO dan orde satu terhadap O₃ dan secara overall reaksi berorde dua

Menentukan Orde Reaksi

- Misalkan suatu reaksi: $O_2(g) + 2NO(g) \rightarrow 2NO_2(g)$
- o Persamaan laju dituliskan sebagai Laju = $k[O_2]^m[NO]^n$
- Untuk menentukan orde reaksi kita harus melakukan serangkaian eksperimen masing-masing dimulai dengan satu set konsentrasi reaktan yang berbeda-beda dan dari masing-masing akan diperoleh laju awal

Laju Awal serangkaian eksperimen pada reaksi O₂ dan NO

Eksperimen	Konsentrasi reaktan awal (mol/L)		Laju awal
'	O_2	NO	(mol/L.s)
1	1,10 x 10 ⁻²	1,30 x 10 ⁻²	3,21 x 10 ⁻³
2	2,20 x 10 ⁻²	1,30 x 10 ⁻²	6,40 x 10 ⁻³
3	1,10 x 10 ⁻²	2,60 x 10 ⁻²	12,8 x 10 ⁻³
4	3,30 x 10 ⁻²	1,30 x 10 ⁻²	9,60 x 10 ⁻³
5	1,10 x 10 ⁻²	3,90 x 10 ⁻²	28,8 x 10 ⁻³

Soal Latihan

 Salah satu reaksi gas yang terjadi dalam kendaraan adalah:

$$NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$$

Laju = $k[NO_2]^m[CO]^n$

 Jika diketahui data sebagai berikut, tentukan orde reaksi keseluruhan

Eksperimen	Laju awal (mol/L.s)	[NO ₂] awal (mol/L)	[CO] awal (mol/L)
1	0,0050	0,10	0,10
2	0,080	0,40	0,10
3	0,0050	0,10	0,20

Persamaan laju Integral Perubahan Konsentrasi terhadap waktu

Misal reaksi $A \rightarrow B$

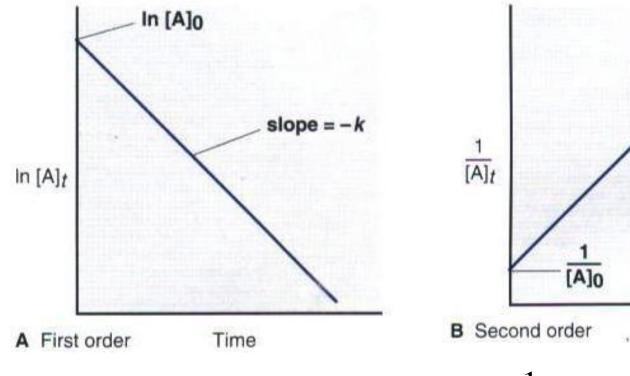
$$Laju = -\frac{\Delta A}{\Delta t} - atau \qquad Laju = k A_{-}$$

$$-\frac{\Delta A}{\Delta t} - k A_{-} - maka \qquad \ln \frac{A_{0}}{A_{\perp}} = kt$$

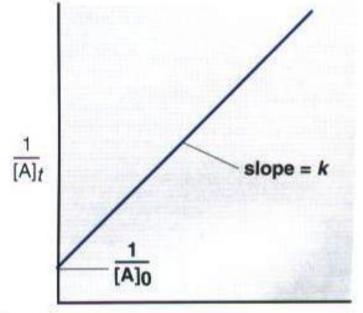
$$-\frac{\Delta \mathbf{L}}{\Delta t} = k \mathbf{L} \quad \text{maka} \quad \ln \frac{\mathbf{L}}{\mathbf{L}} = kt$$

Reaksi orde satu {laju = $k \mathbb{A} \frac{1}{2}$: ln $\mathbb{A}_{\underline{0}}^-$ ln $\mathbb{A}_{\underline{t}}^-$ = kt

Untuk reaksi orde dua
$$laju = -\frac{\Delta A}{\Delta t} = k A^{\frac{1}{2}}$$

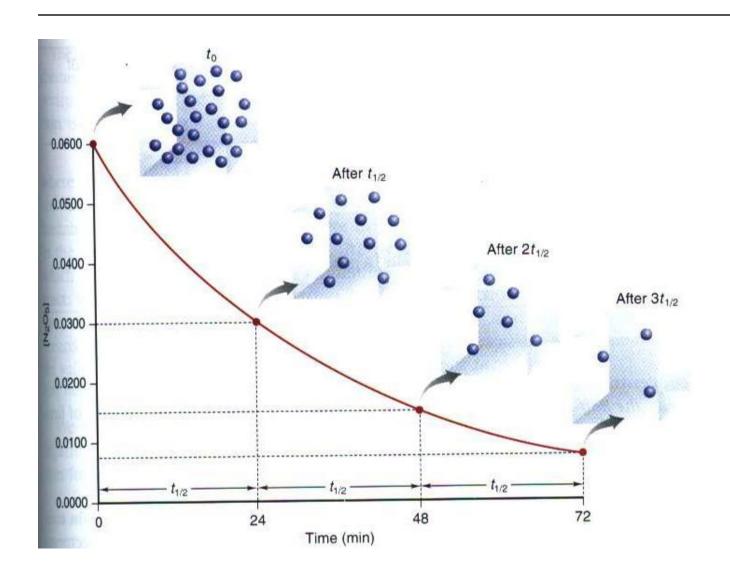

$$\frac{1}{\mathbf{A}_{t}} - \frac{1}{\mathbf{A}_{0}} = kt$$
 Reaksi orde dua laju = k[A]²

Soal Latihan


Siklobutana (C₄H₈) terdekomposisi pada 1000°C menjadi dua molekul etilen (C₂H₄) dengan konstanta laju reaksi orde satu 87 s⁻¹

- Jika konsentrasi awal siklobutana 2,00 M berapa konsentrasinya setelah 0,010 s?
- 2. Berapa fraksi siklobutana terdekomposisi pada waktu tersebut

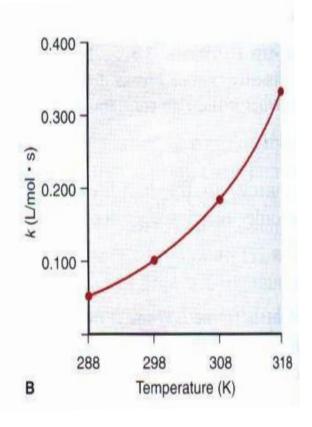
Menentukan Orde Reaksi dari Persamaan Laju Integral


$$\ln \left[\mathbf{A}_{\perp}^{-} = -kt + \ln \left[\mathbf{A}_{\perp}^{-} \right] \right]$$

Time

$$\frac{1}{\mathbf{A}_{\perp}} = kt + \frac{1}{\mathbf{A}_{0}}$$

Waktu Paruh Reaksi


Pengaruh Temperatur Terhadap Laju Reaksi

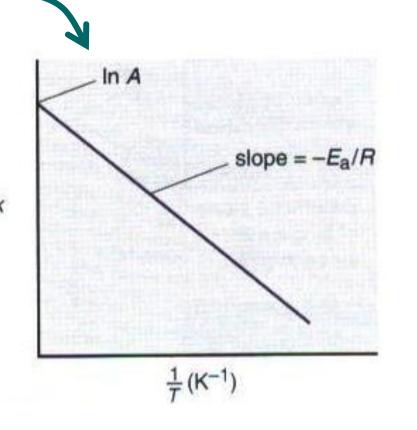
Expt	[Ester]	[H ₂ O]	T (K)	Rate (mol/L · s)	(L/mol·s)
1	0.100	0.200	288	1.04×10 ⁻³	0.0521
2	0.100	0.200	298	2.02×10^{-3}	0.101
3	0.100	0.200	308	3.68×10^{-3}	0.184
4	0.100	0.200	318	6.64×10^{-3}	0.332

۸

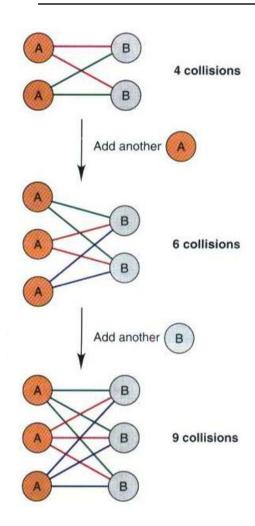
Figure 16.10 Dependence of the rate constant on temperature.

A, In the hydrolysis of an ester, when reactant concentrations are held constant and temperature increases, the rate and rate constant increase. Note the approximate doubling of k with each 10 K (10°C) temperature rise. **B,** A plot of the rate constant vs. temperature for this reaction shows a smoothly increasing curve.

Persamaan Arrhenius


$$k = Ae^{-Ea/RT}$$

$$\ln k = \ln A - \frac{Ea}{R} \left(\frac{1}{T}\right)$$


$$\ln k_2 = \ln A - \frac{Ea}{R} \left(\frac{1}{T_2} \right)$$

$$\ln k_1 = \ln A - \frac{Ea}{R} \left(\frac{1}{T_1} \right)$$

$$\ln \frac{k_2}{k_1} = -\frac{Ea}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

Pengaruh Konsentrasi dan Temperatur

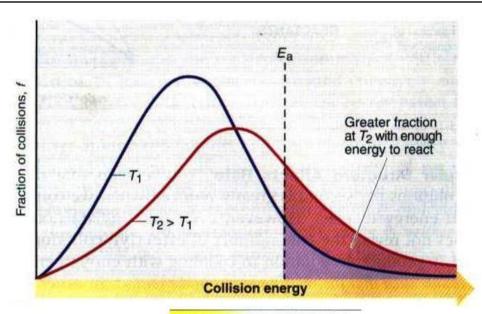
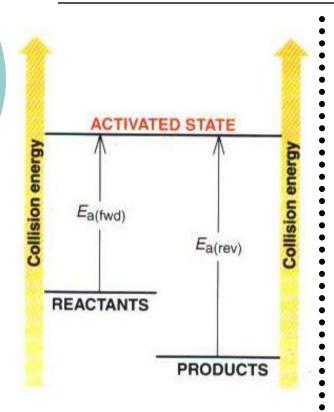
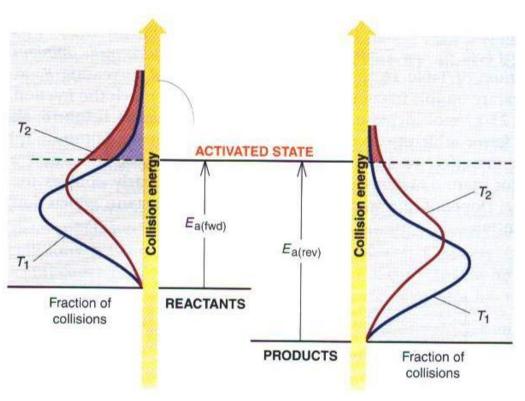
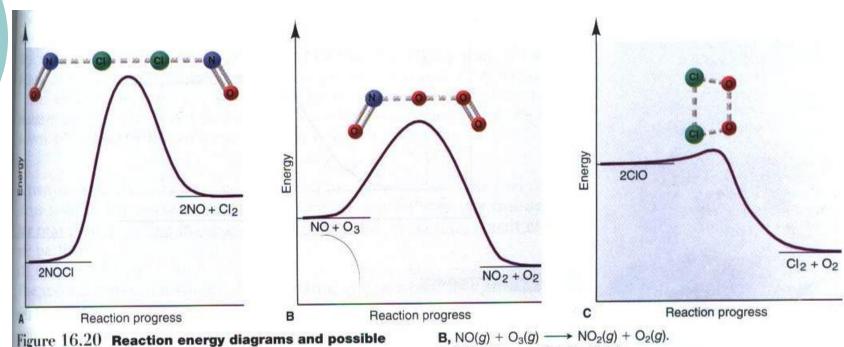




Table 16.5 The Effect of E_a and T on the Fraction (f) of Collisions with Sufficient Energy to Allow Reaction

E _a (kJ/mol)	f (at T = 298 K)
50	1.70×10 ⁻⁹
75	7.03×10^{-14}
100	2.90×10^{-18}
T	f (at $E_a = 50 \text{ kJ/mol}$)
25°C (298 K)	1.70×10^{-9}
35°C (308 K)	3.29×10^{-9}
45°C (318 K)	6.12×10^{-9}

Diagram Tingkat Energi


Pengaruh Struktur Molekul : Faktor Frekuensi

- Tumbukan Efektif: molekul harus bertumbukan sedemikian rupa sehingga atom yang bereaksi melakukan kontak dengan energi yang cukup sehingga membentuk produk
- 2 kriteria: energi yang cukup dan orientasi molekul yang tepat

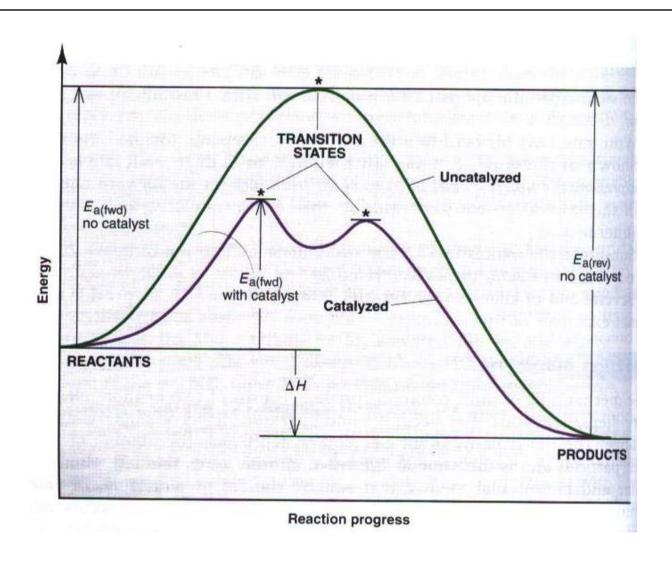
Teori Keadaan Transisi

Diagram Energi dan Keadaan Transisi 3 Jenis Reaksi

transition states for three reactions.

A 2NOCI(g) \longrightarrow 2NO(g) + Cl₂(g)

despite the formula NOCI, the atom sequence is CINO).


C, $2CIO(g) \longrightarrow Cl_2(g) + O_2(g)$.

Note that reaction A is endothermic, B and C are exothermic, and C has a very small Eaffwd).

Diagram Energi Reaksi 2 Tahap

Diagram Energi Reaksi Katalisis dan Non Katalisis

