
Organic Chemistry

4th Edition Paula Yurkanis Bruice

$$CH_3 \stackrel{\delta+}{--} CH \stackrel{CH}{=--} CH_2$$

Chapter 8

Reactions of Dienes
Ultraviolet and Visible
Spectroscopy

Disampaikan oleh: Dr. Sri Handayani 2013

Irene Lee
Case Western Reserve University
Cleveland, OH
©2004, Prentice Hall

Hydrocarbon containing

two double bonds: diene three double bonds: triene four double bonds: tetraene many double bonds: polyene

Different Kinds of Dienes

Nomenclature of Alkenes with More than One Functional Group

- 1. Identify the longest continuous chain containing both double bonds
- 2. Give the double bonds the lowest possible number
- 3. The numbers indicating the double bonds are cited either before the name of the parent compound or before the suffix
- 4. Substituents are cited in alphabetical order

$$CH_2 = C = CH_2$$

systematic: common:

propadiene allene

$$\begin{array}{ccc}
 & \text{CH}_3 \\
 & \text{CH}_2 & 3 & 4 \\
 & \text{CH}_2 = \text{C} - \text{CH} = \text{CH}_2
\end{array}$$

2-methyl-1,3-butadiene isoprene

5-bromo-1,3-cyclohexadiene

When the double bonds are a double bond and a triple bond

$$\begin{array}{c}
1 \\
\text{CH}_2 = \begin{array}{c}
2 \\
3 \\
\text{CH}_2
\end{array}
\begin{array}{c}
4 \\
5 \\
\text{CH}_2
\end{array}
\begin{array}{c}
6 \\
7 \\
\text{CCH}_3
\end{array}$$

$$\begin{array}{c}
1\text{-hepten-5-yne} \\
not 6\text{-hepten-2-yne} \\
because 1 < 2
\end{array}$$

$$CH_{2}CH_{2}CH_{2}CH_{3}$$

$$CH_{2} = CHCHC = CCH_{3}$$

$$CH_{3} = CHCHC = CCH_{3}$$

$$CH_{2} = CHCHC = CCH_{3}$$

$$CH_{3} = CHCHC = CCH_{3}$$

$$CH_{2} = CHCHC = CCH_{3}$$

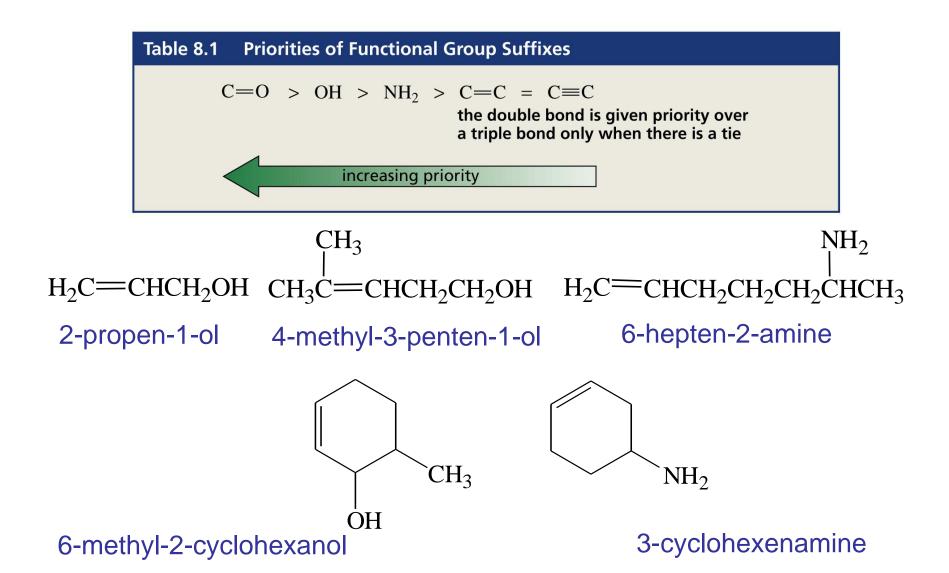
$$CH_{3} = CHCHC = CCH_{3}$$

$$CH_{3} = CHCHC = CCH_{3}$$

$$CH_{4} = CHCHC = CHCHC$$

$$CH_{4} = CHCHC$$

$$CH_{4} = CHCHC$$


$$CH_{4} = CHCHC$$

$$CH_{5} = CHC$$

the longest continuous chain has eight carbons, but the 8-carbon chain does not contain both functional groups; therefore, the compound is named as a hexenyne because the longest continuous chain containing both functional groups has six carbons

If there is a tie, the double bond gets the lowest number

A chain is numbered to give the lowest number to the functional group with the highest priority

Configurational Isomers of Dienes

The Z isomer has the high-priority groups on the same side

(2Z,4Z)-1-chloro-2,4-heptadiene

(2E,4Z)-1-chloro-2,4-heptadiene

$$C = C$$
 H
 $C = C$
 $C = C$

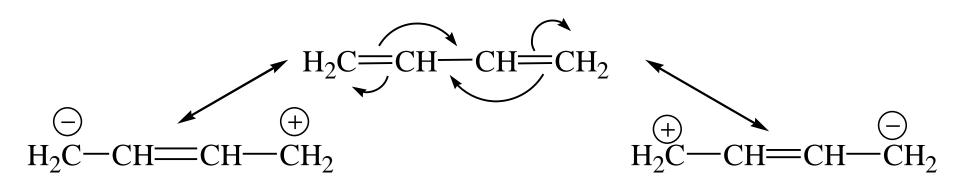
(2Z,4E)-1-chloro-2,4-heptadiene

$$CICH_2$$
 H $C=C$ H CH_2CH_3

(2E,4E)-1-chloro-2,4-heptadiene

relative stabilities of dienes

conjugated diene > isolated diene > cumulated diene


increasing stability

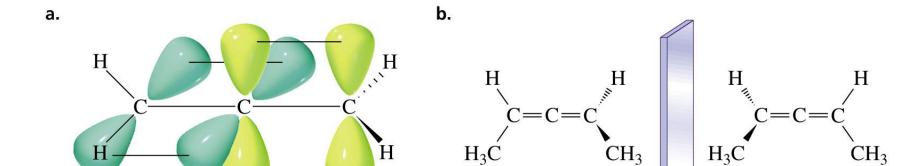
Why is conjugated diene more stable than isolated diene?

single bond formed by
$$sp^2-sp^2$$
 overlap single bonds formed by sp^3-sp^2 overlap CH_2 = CH - CH = CH_2
1,3-butadiene single bonds formed by sp^3-sp^2 overlap CH_2 = CH - CH_2 - CH = CH_2

The closer the electrons are to the nucleus, the shorter and stronger is the bond

Electron Delocalization Stabilizes a Conjugated Diene

resonance contributors


$$CH_2$$
— CH — CH

resonance hybrid

Table 8.2 Dependence of the Length of a Carbon–Carbon Single Bond on the Hybridization of the Orbitals Used in Its Formation

Compound	Hybridization	Bond length (Å)
H ₃ C—CH ₃	sp^3-sp^3	1.54
$H_3C-C=CH_2$	sp^3-sp^2	1.50
H H $ $	sp^2-sp^2 sp^3-sp	1.47 1.46
H $H_2C=C-C\equiv CH$ $HC\equiv C-C\equiv CH$	sp^2-sp	1.43
HC≡C−C≡CH	sp–sp	1.37

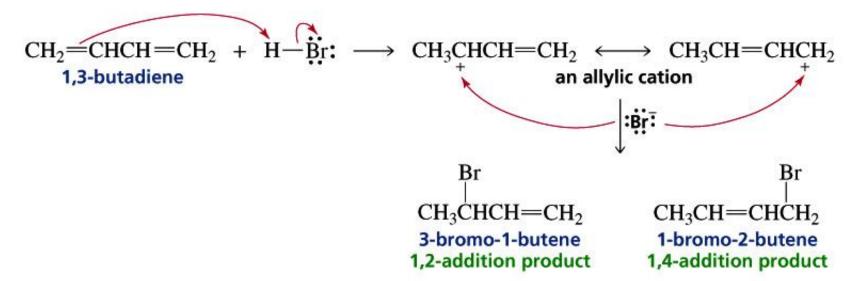
A cumulated diene is less stable than an isolated diene

Electrophilic Addition Reactions of Isolated Dienes

mechanism for the reaction of 1,5-hexadiene with excess HBr

$$CH_{2} = CHCH_{2}CH = CH_{2} + H - \ddot{B}\ddot{r}; \longrightarrow CH_{3}CHCH_{2}CH = CH_{2} \xrightarrow{; \ddot{B}\ddot{r};} CH_{3}CHCH_{2}CH_{2}CH = CH_{2}$$

$$\downarrow \ddot{H} - \ddot{B}\ddot{r};$$


$$CH_{3}CHCH_{2}CH_{2}CHCH_{3} \xrightarrow{; \ddot{B}\ddot{r};} CH_{3}CHCH_{2}CH_{2}CH_{2}CHCH_{3}$$

Addition can occur at only one of the double bonds when 1 mole of HBr is available

Electrophilic Addition Reactions of Conjugated Dienes

$$R-\overset{1}{C}H=\overset{2}{C}H-\overset{3}{C}H=\overset{4}{C}H-R$$
 the conjugated system
$$\overset{Br}{Br} \overset{Br}{Br} \overset{Br}{Br} \overset{Br}{Br}$$
 CH₃CH=CHCH=CHCH₃ + CH₃CHCH=CHCHCH₃ 2,4-hexadiene
$$\overset{Br_2}{4,5\text{-dibromo-2-hexene}} \overset{Br}{1,2\text{-addition product}} \overset{2}{2,5\text{-dibromo-3-hexene}} \overset{2}{1,4\text{-addition product}}$$

mechanism for the reaction of 1,3-butadiene with HBr

A conjugated diene undergoes both 1,2- and 1,4-addition

$$\begin{array}{ccc} CH_3 & CH_3 \\ | & | \\ CH_3C - CH = CH_2 & \longleftrightarrow & CH_3C = CH - CH_2 \end{array}$$

carbocation formed by adding H+ to C-1

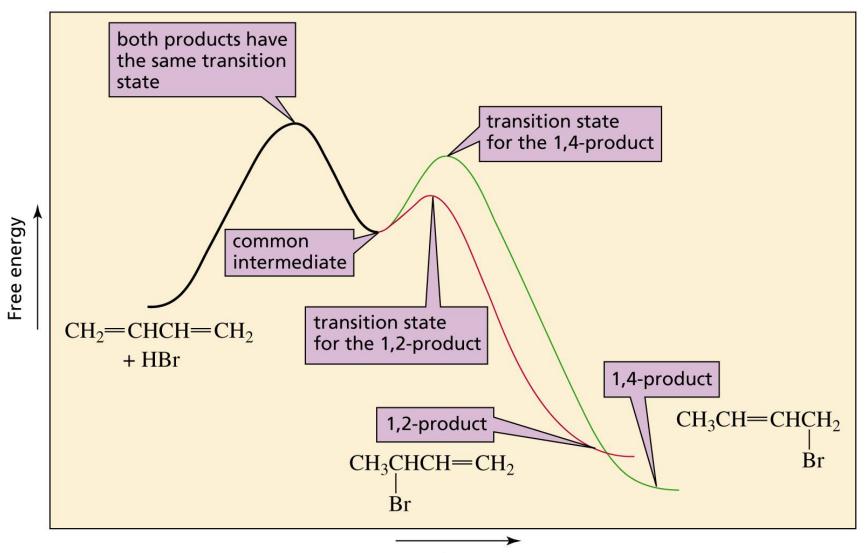
carbocation formed by adding H⁺ to C-4

Compare the two addition product distribution at different reaction temperatures

$$\begin{array}{c} \text{CH}_2\text{=-CHCH=-CH}_2 + \text{HBr} \xrightarrow{-80\,^{\circ}\text{C}} & \begin{array}{c} \text{Br} & \text{Br} \\ | \\ \text{CH}_3\text{CHCH=-CH}_2 + \text{CH}_3\text{CH=-CHCH}_2 \\ \text{1,2-addition product} & \text{1,4-addition product} \\ \text{80\%} & \text{20\%} \\ & \text{kinetic control} \end{array}$$

$$CH_2 = CHCH = CH_2 + HBr \xrightarrow{\textbf{45 °C}} \begin{array}{c} Br \\ | \\ CH_3CHCH = CH_2 \\ \textbf{1,2-addition product} \end{array} + \begin{array}{c} Br \\ | \\ CH_3CH = CHCH_2 \\ \textbf{1,4-addition product} \\ \textbf{15\%} \end{array}$$

thermodynamic or equilibrium control


Thermodynamic Versus Kinetic Control

- The thermodynamic product is the most stable product
- The thermodynamic product predominates when the reaction is reversible (thermodynamic control)
- The kinetic product is the product that is formed most rapidly
- The kinetic product predominates when the reaction is irreversible (kinetic control)

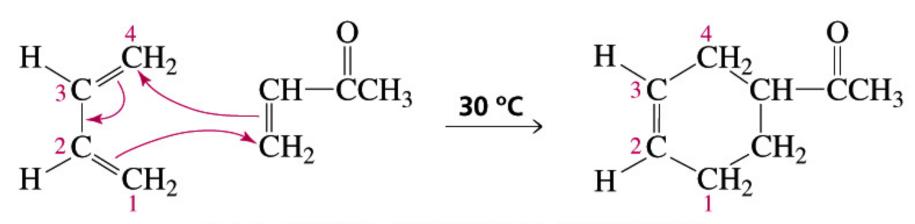
The 1,4-addition product has the greater number of alkyl groups bonded to the sp^2 carbon (more stable)

Why is the 1,2-addition product the kinetic product?

Consider the reaction coordinate diagram ...

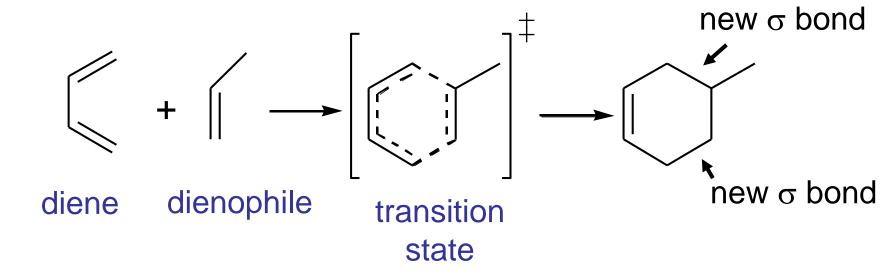
Progress of the reaction

Consider 1,3-pentadiene + DCI


H₂C=CHCH=CHCH₃ + DCl
$$\longrightarrow$$
 D Cl
1,2-addition product
78% $+$
CH₂CH=CHCHCH₃
D Cl
1,4-addition product
22%

The 1,2-addition is the major product because the chloride ion can stabilize the positive charge better at C-2 than at C-4 simply because it is closer to C-2 (the proximity effect)

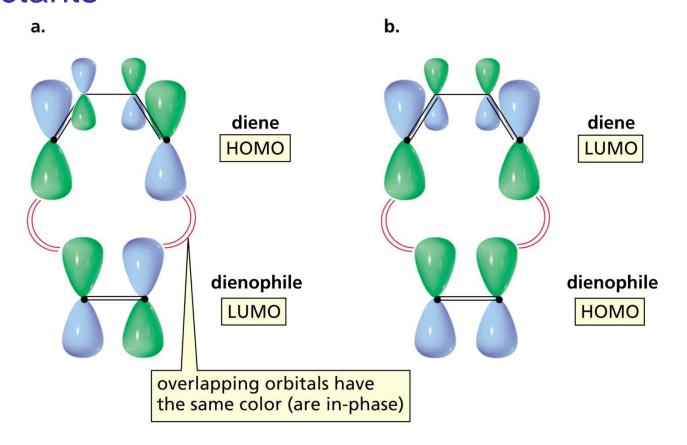
Do not assume that the 1,4-addition product is always the thermodynamic product ...


$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_2 = \text{CHCH} = \text{CCH}_3 \\ \text{4-methyl-1,3-pentadiene} \end{array} + \text{HBr} \longrightarrow \begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_4 = \text{CHCH} = \text{CCH}_3 \\ \text{Br} \end{array} + \begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_4 = \text{CHCCH}_3 \\ \text{Br} \end{array}$$

The Diels—Alder Reaction: A 1,4-Addition Reaction

a 1,4-addition reaction to 1,3-butadiene

The Diels-Alder reaction is a pericyclic reaction; a [4+2] cycloaddition reaction



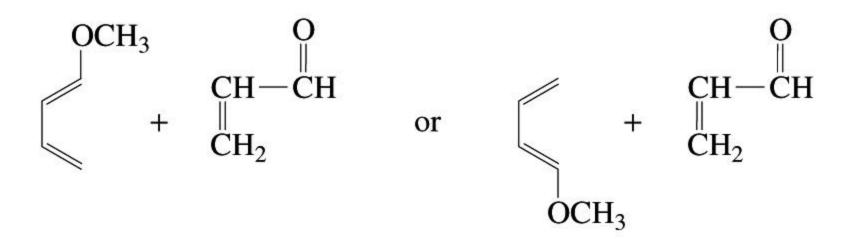
The reactivity of the dienophile is increased if one or more electron-withdrawing groups are attached to its sp^2 carbons

$$\delta^{-}$$
O
 δ^{+}
 CH_{2}
 CH_{2}
 CH_{3}
resonance hybrid

A Molecular Orbital Description of the Diels–Alder Reaction

Let's focus on the HOMO and the LUMO of the reactants

Stereochemistry of the Diels–Alder Reaction

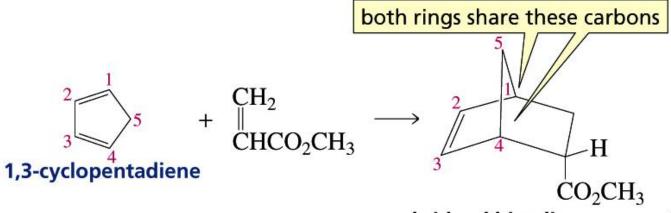

$$CH_2 = CH - CH = CH_2 + CH_2 = CH - C \equiv N \longrightarrow C \equiv N + C \equiv N + C \equiv N$$

The reaction is a syn addition

- The Diels-Alder reaction is stereospecific
- The configuration of the reactants is maintained
- The reaction is concerted

Predicting the reaction products

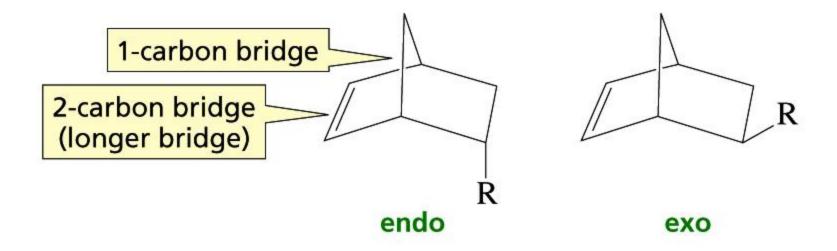
1. Consider the alignment of the reactants

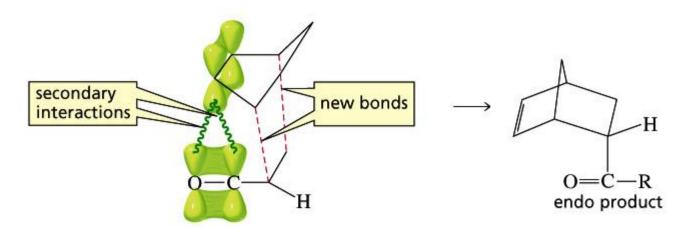


2. Consider the charge distribution in each of the reactants

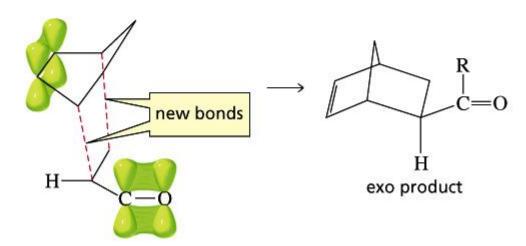
$$CH_2$$
= CH - CH = CH - OCH_3 CH_3 CH_2 - CH = CH - CH = OCH_3 resonance contributors of the diene

$$CH_2$$
= CH - CH \longleftrightarrow CH_2 - CH = CH
resonance contributors of the dienophile


Only the cis conformation can participate in a Diels–Alder reaction

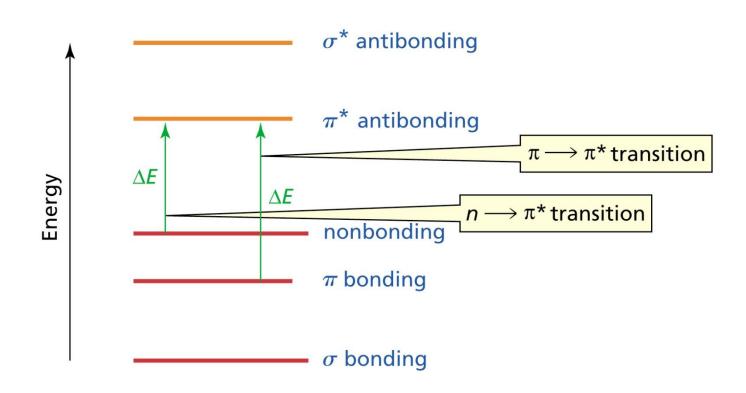

bridged bicyclic compound

bridged bicyclic compound


Two Possible Configurations of Bridged Bicyclic Compounds

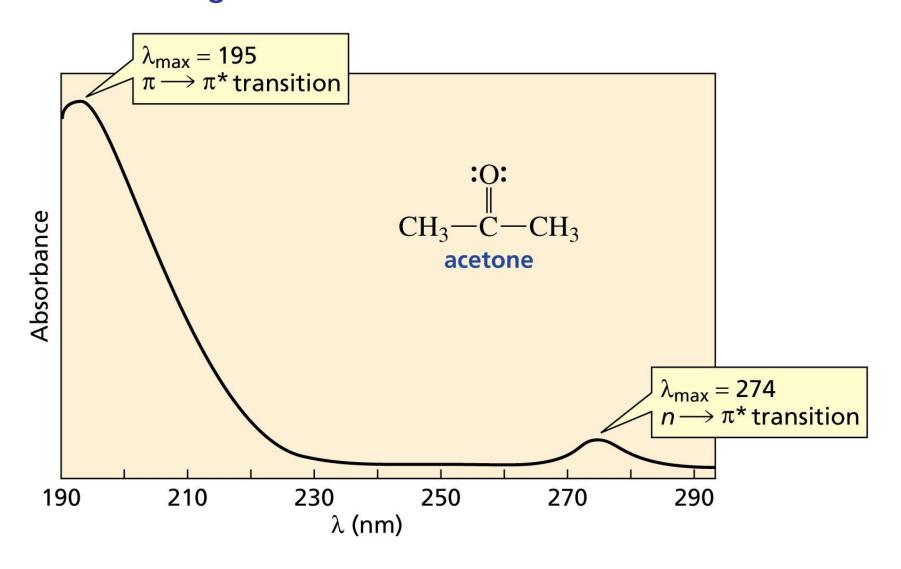
Secondary orbital overlap favors the endo product formation

secondary orbital overlap in the endo transition state


no secondary orbital overlap in the exo transition state

Ultraviolet and Visible Spectroscopy

 Spectroscopy is the study of the interaction between matter and electromagnetic radiation


 UV/Vis spectroscopy provides information about compounds with conjugated double bonds

UV and Vis light cause only two kinds of electronic transition

- Only organic compounds with $\boldsymbol{\pi}$ electrons can UV/Vis spectra
- A visible spectrum is obtained if visible light is absorbed
- A UV spectrum is obtained if UV light is absorbed

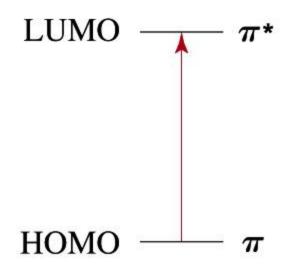
A chromophore is the part of a molecule which absorbs UV or visible light

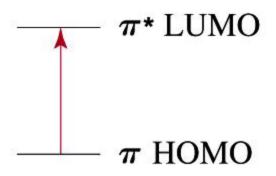
The Beer-Lambert Law

$$A = cl\varepsilon$$

 $A = \log(I_0/I)$ c = concentration of substancein solution I = length of the cell in cm $\varepsilon = \text{molar absorptivity}$

The molar absorptivity of a compound is a constant that is characteristic of the compound at a particular wavelength


Effect of Conjugation on λ_{max}


$$CH_3$$
 CH_3
 CC
 CH_3

acetone

$$n \longrightarrow \pi^* \quad \lambda_{max} = 270 \text{ nm}$$

 $\pi \longrightarrow \pi^* \quad \lambda_{max} = 187 \text{ nm}$

$$\lambda_{\text{max}} = 324 \text{ nm}$$

 $\lambda_{\text{max}} = 219 \text{ nm}$

nonconjugated π electrons

$$c=0$$

conjugated π electrons

$$c=c$$

Both the λ_{max} and ϵ increase as the number of conjugated double bonds increases

Table 8.3 Values of λ_{max} and ϵ for Ethylene and Conjugated Dienes		
Compound	$\lambda_{\max}(\mathbf{nm})$	ε
$H_2C=CH_2$	165	15,000
	217	21,000
	256	50,000
	290	85,000
	334	125,000
	364	138,000

An auxochrome is a substituent in a chromphore that alters the λ_{max} and the intensity of the absorption

The Visible Spectrum and Color

Table 8.4 Dependence of the Color Observed on the Wavelength of Light Absorbed		
Wavelengths absorbed (nm)	Observed color	
380–460	yellow	
380–500	orange	
440–560	red	
480–610	purple	
540–650	blue	
380–420 and 610–700	green	

Uses of UV/Vis Spectroscopy

- Measure the rates of a reaction
- Determine the pK_a of a compound
- Estimate the nucleotide composition of DNA