
Computer Applications: Topic 5 Page 36

YOGYAKARTA STATE UNIVERSITY

MATHEMATICS AND NATURAL SCIENCES FACULTY

MATHEMATICS EDUCATION STUDY PROGRAM

TOPIC 5

Computer application for handling polynomial

Polynomials are used so commonly in computation that Matlab has special commands to
deal with them. The polynomial x4 +2x3 −13x2 −14x+24 is represented in Matlab by the array
[1,2,-13,-14,24], i.e., by the coefficients of the polynomial starting with the highest power and
ending with the constant term. If any power is missing from the polynomial its coefficient must
appear in the array as a zero. Here are some of the things Matlab can do with polynomials. Try
each piece of code in Matlab and see what it does.

The following table lists the MATLAB polynomial functions.

Function Description

conv Multiply polynomials

deconv Divide polynomials

poly Polynomial with specified roots

polyder Polynomial derivative

polyfit Polynomial curve fitting

polyval Polynomial evaluation

polyvalm Matrix polynomial evaluation

residue Partial-fraction expansion (residues)

roots Find polynomial roots

Roots of a Polynomial
% find the roots of a polynomial
p=[1,2,-13,-14,24];
r=roots(p)

Find the polynomial from the roots
If you know that the roots of a polynomial are 1, 2, and 3, then you can find the polynomial in
Matlab’s array form this way
r=[1,2,3];
p=poly(r)

Multiply and devide Polynomials

Polynomial multiplication and division correspond to the operations convolution and
deconvolution. The functions conv and deconv implement these operations.

Computer Applications: Topic 5 Page 37

Consider the polynomials and . To compute their product,

a = [1 2 3]; b = [4 5 6];

c = conv(a,b)

c =

 4 13 28 27 18

Use deconvolution to divide back out of the product:

[q,r] = deconv(c,a)

q =

 4 5 6

r =

 0 0 0 0 0

.

First Derivative
The polyder function computes the derivative of any polynomial. To obtain the derivative of the
polynomial p = [1 0 -2 -5],

q = polyder(p)

q =

 3 0 -2

polyder also computes the derivative of the product or quotient of two polynomials. For example,
create two polynomials a and b:

a = [1 3 5];

b = [2 4 6];

Calculate the derivative of the product a*b by calling polyder with a single output argument:

c = polyder(a,b)

c =

 8 30 56 38

Calculate the derivative of the quotient a/b by calling polyder with two output arguments:

[q,d] = polyder(a,b)
q =
 -2 -8 -2
d =
 4 16 40 48 36

q/d is the result of the operation.

Computer Applications: Topic 5 Page 38

Evaluating Polynomials
The polyval function evaluates a polynomial at a specified value. To evaluate p at s = 5, use
polyval(p,5)

ans =
 110
It is also possible to evaluate a polynomial in a matrix sense. In this case
becomes , where X is a square matrix and I is the identity matrix. For
example, create a square matrix X and evaluate the polynomial p at X:
X = [2 4 5; -1 0 3; 7 1 5];
Y = polyvalm(p,X)

Y =
 377 179 439
 111 81 136
 490 253 639

Evaluate a Polynomial and drawing the graph
If you have an array of x-values and you want to evaluate a polynomial at each one, do this:
% define the polynomial
a=[1,2,-13,-14,24];
% load the x-values
x=-5:.01:5;
% evaluate the polynomial
y=polyval(a,x);
% plot it
plot(x,y)

Partial Fraction Expansions
residue finds the partial fraction expansion of the ratio of two polynomials. This is particularly
useful for applications that represent systems in transfer function form. For polynomials b and a,
if there are no multiple roots,

where r is a column vector of residues, p is a column vector of pole locations, and k is a row
vector of direct terms. Consider the transfer function

b = [-4 8];
a = [1 6 8];
[r,p,k] = residue(b,a)

Computer Applications: Topic 5 Page 39

r =
 -12
 8

p =
 -4
 -2

k =
 []
Given three input arguments (r, p, and k), residue converts back to polynomial form:
[b2,a2] = residue(r,p,k)

b2 =
 -4 8
a2 =
 1 6 8

Polynomial Curve Fitting
polyfit finds the coefficients of a polynomial that fits a set of data in a least-squares sense:
p = polyfit(x,y,n)
x and y are vectors containing the x and y data to be fitted, and n is the degree of the polynomial
to return. For example, consider the x-y test data
x = [1 2 3 4 5]; y = [5.5 43.1 128 290.7 498.4];
A third degree polynomial that approximately fits the data is
p = polyfit(x,y,3)

p =
 -0.1917 31.5821 -60.3262 35.3400
Compute the values of the polyfit estimate over a finer range, and plot the estimate over the real
data values for comparison:
x2 = 1:.1:5;
y2 = polyval(p,x2);
plot(x,y,'o',x2,y2)
grid on

Computer Applications: Topic 5 Page 40

Fitting Data to a Polynomial
If you have some data in the form of arrays (x,y), Matlab will do a least-squares fit of a

polynomial of any order you choose to this data. In this example we will let the data be the sine
function between 0 and _ and we will fit a polynomial of order 4 to it. Then we will plot the two
functions on the same frame to see if the fit is any good.
x=linspace(0,pi,50);
% make a sine function with 1% random error on it
f=sin(x)+.01*rand(1,length(x));
% fit to the data
p=polyfit(x,f,4);
% evaluate the fit
g=polyval(p,x);
% plot fit and data together
plot(x,f,’r*’,x,g,’b-’)

Interpolating With polyfit and polyval

You can also use Matlab’s polynomial commands to build an interpolating polynomial.
Here is an example of how to use them to find a 5th-order polynomial fit to a crude
representation of the sine function.
% make the crude data set with dx too big for good accuracy
>>dx=pi/5;
>>x=0:dx:2*pi;
>>y=sin(x);
>>p=polyfit(x,y,5); % make a 5th order polynomial fit to this data

>>xi=0:dx/20:2*pi; % make a fine x-grid

% evaluate the fitting polynomial on the fine grid
>>yi=polyval(p,xi);
% and display the fit, the data, and the exact sine function

>>plot(x,y,’b*’,xi,yi,’r-’,xi,sin(xi),’c-’)
>>pause
% display the difference between the polynomial fit and the exact sine function
>>plot(xi,yi-sin(xi),’b-’)

