
Table of Contents
ALGORITHM .. 1

Expressing algorithms ... 2

Symbols ... 2

PROGRAM STRUCTURE IN PASCAL PROGRAMMING .. 4

Program Structure .. 4

Comments ... 5

Punctuation ... 6

Indentation ... 6

IDENTIFIERS ... 6

CONSTANTS ... 7

VARIABLES AND DATA TYPES .. 8

ASSIGNMENT AND OPERATIONS .. 9

DATA TYPES ... 12

Ordinal type .. 12

Integer ... 12

Boolean ... 12

Char ... 12

Real Type ... 13

String ... 13

INPUT .. 15

OUTPUT ... 16

Formatting Output .. 17

STANDARD FUNCTIONS .. 17

MAKING DECISIONS .. 21

IF THEN .. 21

IF THEN ELSE ... 22

NESTED IF .. 23

Logical Operators and Boolean Expressions ... 23

CASE OF ... 26

LOOPS .. 29

FOR..DO ... 30

WHILE..DO ... 32

REPEAT..UNTIL .. 33

ONE-DIMENSIONAL ARRAYS ... 34

Sorting arrays .. 35

TWO DIMENSIONAL ARRAYS .. 36

ENUMERATED DATA TYPES ... 37

SUBRANGES... 39

RECORDS ... 40

PROCEDURES ... 42

Global and Local variables .. 44

Using Procedures with Parameters .. 45

The Variable Parameter .. 46

FUNCTIONS ... 46

REFERENCE: ... 48

1

ALGORITHM

An algorithm (pronounced AL-go-rith-um) is a procedure or formula for solving a problem. The

word derives from the name of the mathematician, Mohammed ibn-Musa al-Khwarizmi, who

was part of the royal court in Baghdad and who lived from about 780 to 850. Al-Khwarizmi's

work is the likely source for the word algebra as well.

In mathematics and computer science, an algorithm usually means a small procedure that solves

a recurrent problem. To make a computer do anything, you have to write a computer program.

A computer program can be viewed as an elaborate algorithm. To write a computer program, you

have to tell the computer, step by step, exactly what you want it to do. The computer then

"executes" the program, following each step mechanically, to accomplish the end goal.

When you are telling the computer what to do, you also get to choose how it's going to do it.

That's where computer algorithms come in. The algorithm is the basic technique used to get the

job done.

Let's follow an example to help get an understanding of the algorithm concept. Let's say that you

have a friend arriving at the airport, and your friend needs to get from the airport to your house.

Here are four different algorithms that you might give your friend for getting to your home:

• The taxi algorithm:

– Go to the taxi stand.

– Get in a taxi.

– Give the driver my address.

• The call-me algorithm:

– When your plane arrives, call my cell phone.

– Meet me outside baggage claim.

• The rent-a-car algorithm:

– Take the shuttle to the rental car place.

– Rent a car.

– Follow the directions to get to my house.

• The bus algorithm:

– Outside baggage claim, catch bus number 70.

– Transfer to bus 14 on Main Street.

– Get off on Elm street.

– Walk two blocks north to my house.

All four of these algorithms accomplish exactly the same goal, but each algorithm does it in

completely different way. Each algorithm also has a different cost and a different travel

time. Taking a taxi, for example, is probably the fastest way, but also the most expensive.

2

Taking the bus is definitely less expensive, but a whole lot slower. You choose the algorithm

based on the circumstances.

In computer programming, there are often many different ways -- algorithms -- to accomplish

any given task. Each algorithm has advantages and disadvantages in different situations.

Sorting is one place where a lot of research has been done, because computers spend a lot of

time sorting lists. Here are five different algorithms that are used in sorting:

• Bin sort

• Merge sort

• Bubble sort

• Shell sort

• Quicksort

If you have a million integer values between 1 and 10 and you need to sort them, the bin sort

is the right algorithm to use. If you have a million book titles, the quicksort might be the best

algorithm. By knowing the strengths and weaknesses of the different algorithms, you pick the

best one for the task at hand.

Expressing algorithms

Algorithms can be expressed in many kinds of notation, including natural languages,

pseudocode, flowcharts, and programming languages. Natural language expressions of

algorithms tend to be verbose and ambiguous, and are rarely used for complex or technical

algorithms.

Pseudocode and flowcharts are structured ways to express algorithms that avoid many of the

ambiguities common in natural language statements, while remaining independent of a

particular implementation language. Programming languages are primarily intended for

expressing algorithms in a form that can be executed by a computer, but are often used as a

way to define or document algorithms.

A flowchart is a common type of chart, that represents an algorithm or process, showing the

steps as boxes of various kinds, and their order by connecting these with arrows. Flowcharts

are used in analyzing, designing, documenting or managing a process or program in various

fields.

Symbols

A typical flowchart from older Computer Science textbooks may have the following kinds of

symbols:

• Start and end symbols represented as circles, ovals or rounded rectangles, usually

containing the word "Start" or "End", or another phrase signaling the start or end of a

process, such as "submit enquiry" or "receive product".

3

• Arrows showing what's called "flow of control" in computer science. An arrow

coming from one symbol and ending at another symbol represents that control passes

to the symbol the arrow points to.

• Processing steps represented as rectangles. Examples: "Add 1 to X"; "replace

identified part"; "save changes" or similar.

• Input/Output represented as a parallelogram. Examples: Get X from the user; display

X.

• Conditional or decision Represented as a diamond (rhombus). These typically

contain a Yes/No question or True/False test.

This symbol is unique in that it has two arrows coming out of it, usually from the

bottom point and right point, one corresponding to Yes or True, and one

corresponding to No or False. The arrows should always be labeled. More than two

arrows can be used, but this is normally a clear indicator that a complex decision is

being taken, in which case it may need to be broken-down further, or replaced with

the "pre-defined process" symbol. A number of other symbols that have less

universal currency, such as:

• A Document represented as a rectangle with a wavy base;

• A Manual input represented by parallelogram, with the top irregularly sloping up

from left to right. An example would be to signify data-entry from a form;

4

• A Manual operation represented by a trapezoid with the longest parallel side at the

top, to represent an operation or adjustment to process that can only be made

manually.

• A Data File represented by a cylinder.

Flowcharts may contain other symbols, such as connectors, usually represented as circles, to

represent converging paths in the flowchart. Circles will have more than one arrow coming

into them but only one going out.

Some flowcharts may just have an arrow point to another arrow instead. These are useful to

represent an iterative process (what in Computer Science is called a loop). A loop may, for

example, consist of a connector where control first enters, processing steps, a conditional

with one arrow exiting the loop, and one going back to the connector. Off-page connectors

are often used to signify a connection to a (part of another) process held on another sheet or

screen. It is important to remember to keep these connections logical in order. All processes

should flow from top to bottom and left to right.

PROGRAM STRUCTURE IN PASCAL PROGRAMMING

The Pascal programming language was created by Niklaus Wirth in 1970. It was named after
Blaise Pascal, a famous French Mathematician. It was made as a language to teach programming
and to be reliable and efficient. Pascal has since become more than just an academic language
and is now used commercially.

Before you start learning Pascal, you will need a Pascal compiler. This tutorial uses the Turbo
Pascal for Windows Compiler.

Program Structure

In a program, you must always obey the rules of the language, in our case, the Pascal language.
A natural language has its own grammar rules, spelling and sentence construction. The Pascal
programming language is a high level language that has its own syntax rules and grammar rules.

A program structure in Pascal basically consist of three parts, that are:

1. Program title (it is optional)
2. Declaration section
3. Main program

Below is a simple example of a small program. (you can type the program in a text file, save the

text file as filename .pas and open it with Turbo Pascal for windows. The .pas extension is
required.).

5

example:

Program exam_Program1; {program title}

uses wincrt; {declaration section}

Begin {start the main program, no semicolon}

 Write('Hello. Prepare to learn PASCAL!!');

 readln;

End. {end of the main program}

The Pascal programming language has several important words in it. These are called keywords
or reserved word. A program in Pascal starts with the keyword 'Program' following the name
(title) of the program. There are various restrictions on how to write this title. The title (name) of
program is optional. You can omit the program title but it lets you identify what the program
does quickly and easily.

After the program title comes declaration section. There are some keywords can be declared in
this section, eg. uses, const, var, type and label. (we will discuss later).

In this example, this part consists the keyword 'Uses', that allows your program to use extra
commands, such as wincrt. CRT stands for Cathode Ray Tube - ie. the screen, and we use wincrt
as we work with pascal for windows.

After declaration section, the main program always starts with the reserved word 'Begin'. This
indicates the beginning of the main part of your program. After this comes your program code.
The end of the program is indicated by the keyword 'end.'. Note the full stop (.) after the word
'end' (this is required though).

Program codes in the main program of the example above are :
 Write('Hello. Prepare to learn PASCAL!!');

 readln;

The code is only to display the message :

Hello. Prepare to learn PASCAL!!

So, to display any message on the screen, you should use 'write' (or 'writeln'). The 'readln'
statement, here is used as to 'stop' the program and wait until the user presses enter. If the 'readln'
statement is missing in this program, then the message is displayed on the screen without giving
any chance for the user to read it and obviously halts! Try running this program with and without
the 'readln' statement and notice the difference.

Comments

The messages in between the braces { } are called comments or in-line documentation. In the
example above {program title}, {declaration section}, {start the main program}, {end of the main

program} are the comments.

6

It is a good idea to comment your code so you can understand what it is doing if you look at it
later. It is also important so that other people can understand it also. In pascal you can comment
your code in two different ways, that use the braces { comment } or (* comment*).

Punctuation

Another important thing which must be noticed is the semi-colon (;). The semicolon is used after
each statement in the program, except those that you will learn later. However, in the example
above, there isn't a semicolon after a 'begin' statement. This is because the flow of the program
has just started and must not be stopped by a ';'.

In Pascal program, you must have a semicolon following:

• the program heading
• each constant definition
• each variable declaration
• each type definition
• almost all statements

Indentation

Now, look at this next example:

Program exam_program2; uses wincrt; begin

Write('Hello. Prepare to learn PASCAL!!');Readln;End.

This program is same as Program exam_program1. The only difference is: neatness and
friendliness. It is much better for it to look like the previous one.

This first program (Program exam_program1) is commonly referred to in programming, as
'indented'. Indentation is a must in writing programs as it aids in the way the code is written i.e.
neater. Indentation also helps with debugging and code presentation. In general, indent each
block. Skip a line between blocks.

IDENTIFIERS

Identifiers are names that allow you to reference stored values, such as variables and constants.
Also, every program and unit must be named by an identifier.

example:

In the example above, exam_program1, exam_program2, exam_program3 are identifier,
because they are the name of program.

Pascal has some rules for identifiers:

• Must begin with a letter from the English alphabet.

7

• Can be followed by alphanumeric characters (alphabetic characters and numerals) and
possibly the underscore (_).

• May not contain certain special characters, many of which have special meanings in
Pascal.
~ ! @ # $ % ^ & * () + ` - = { } [] : " ; ' < > ? , . / |

• Pascal is not case sensitive! MyProgram, MYPROGRAM, and mYpRoGrAm are equivalent. But
for readability purposes, it is a good idea to use meaningful capitalization

Different implementations of Pascal differ in their rules on special characters. Note that the
underscore character (_) is usually allowed.

Several identifiers are reserved in Pascal as syntactical elements. You are not allowed to use
these for your identifiers. These include but are not limited to:

and array begin case const div

do downto else end file For
forward function goto if in label
mod nil not of or Packed
procedure program record repeat set then
to type until var while with

Identifiers can be any length, but some Pascal compilers will only look at the first several
characters. One usually does not push the rules with extremely long identifiers or loads of special
characters, since it makes the program harder to type for the programmer. Also, since most
programmers work with many different languages, each with different rules about special
characters and case-sensitivity, it is usually best to stick with alphanumeric characters and the
underscore character.

CONSTANTS

Constants are referenced by identifiers, and can be assigned one value at the beginning of the
program. The value stored in a constant cannot be changed.

Constants are defined in the constant section as a part of declaration section of the program:

const

 Identifier1 = value;

 Identifier2 = value;

 Identifier3 = value;

For example, let's define some constants of various data types: strings, characters, integers, reals,
and Booleans. These data types will be further explained in the next section.

8

Example:

Program exam_const;

uses wincrt;

const

 Name = 'Pascal';

 FirstLetter = 'a';

 Year = 2010;

 pi = 3.1415926535897932;

 Usingwincrt = TRUE;
Begin

 Write('Hello, My Name is ‘);Write(FirstLetter);

 writeln(Name);

 Write('This year is ‘);Writeln(Year);

 Write('Do you know what is pi number? That is ‘);Write(pi);

End.

Note that in Pascal, characters are enclosed in single quotes, or apostrophes (')!

Constants are useful for defining a value which is used throughout your program but may change
in the future. Instead of changing every instance of the value, you can change just the constant
definition.

Typed constants force a constant to be of a particular data type. For example,

const

 a : real = 12;

would yield an identifier a which contains a real value 12.0 instead of the integer value 12.

VARIABLES AND DATA TYPES

Variables are non-constant terms so that they are used in the program for storing values.
Variables are similar to constants, but their values can be changed as the program runs. Variables
must first be declared in the declaration section using keyword ‘var’ before they can be used.
The 'var' statement, is used to introduce any suitable variables which will be used later in the
program. The syntax is:

var

 IdentifierList1 : DataType1;

 IdentifierList2 : DataType2;

 IdentifierList3 : DataType3;

 ...

IdentifierList is a series of identifiers, separated by commas (,). All identifiers in the list are
declared as being of the same data type.

9

The basic data types in Pascal include: integer, real, char and Boolean

• The integer data type can contain integers from -32768 to 32767. This is the signed
range that can be stored in a 16-bit word, and is a legacy of the era when 16-bit CPUs

were common. For backward compatibility purposes, a 32-bit signed integer is a longint
and can hold a much greater range of values.

• The real data type has a range from 3.4x10-38 to 3.4x1038, in addition to the same range
on the negative side. Real values are stored inside the computer similarly to scientific
notation, with a mantissa and exponent, with some complications. In Pascal, you can
express real values in your code in either fixed-point notation or in scientific notation,
with the character E separating the mantissa from the exponent. Thus,
 452.13 is the same as 4.5213e2

• The char data type holds characters. Be sure to enclose them in single quotes, like so:
'a' 'B' '+'

• The Boolean data type can have only two values: TRUE and FALSE

An example of declaring several variables is:

var

 age, year, grade : integer;

 circumference : real;

 LetterGrade : char;

 DidYouFail : Boolean;

ASSIGNMENT AND OPERATIONS

Once you have declared a variable, you can store values in it. This is called assignment.

To assign a value to a variable, follow this syntax:

 variable_name := expression;

Note that unlike other languages, whose assignment operator is just an equals sign, Pascal uses a
colon followed by an equals sign (:=), similarly to how it's done in most computer algebra
systems.

The expression can either be a single value:

 some_real := 385.385837;

or it can be an arithmetic sequence:

 some_real := 37573.5 * 37593 + 385.8 / 367.1;

10

The arithmetic operators in Pascal are shown in the table below:

Operator Operation Operands Result

+ Addition or unary positive real or integer real or integer

- Subtraction or unary negative real or integer real or integer

* Multiplication real or integer real or integer

/ Real division real or integer real

div Integer division integer integer

Mod Modulus (remainder division) integer integer

Notice that:

• div and mod only work on integers.

• / works on both reals and integers but will always yield a real answer.

• The other operations work on both reals and integers.

When mixing integers and reals, the result will always be a real since data loss would result
otherwise. This is why Pascal uses two different operations for division and integer division. 7 /

2 = 3.5 (real), but 7 div 2 = 3 (and 7 mod 2 = 1 since that's the remainder).

Each variable can only be assigned a value that is of the same data type. Thus, you cannot assign
a real value to an integer variable. However, certain data types will convert to a higher data type.
This is most often done when assigning integer values to real variables. Suppose you had this
variable declaration section:

var

 some_int : integer;

 some_real : real;

When the following block of statements executes,

some_int := 375;

some_real := some_int;

some_real will have a value of 375.0.

In Pascal, the minus sign can be used to make a value negative. The plus sign can also be used to
make a value positive, but is typically left out since values default to positive.

Do not attempt to use two operators side by side, like in:

some_real := 37.5 * -2;

This may make perfect sense to you, since you're trying to multiply by negative-2. However,
Pascal will be confused — it won't know whether to multiply or subtract. You can avoid this by
using parentheses to clarify:

11

some_real := 37.5 * (-2);

The computer follows an order of operations similar to the one that you follow when you do
arithmetic. Multiplication and division (* / div mod) come before addition and subtraction (+ -),
and parentheses always take precedence. So, for example, the value of: 3.5*(2+3) will be 17.5.

Pascal cannot perform standard arithmetic operations on Booleans. There is a special set of
Boolean operations. Also, you should not perform arithmetic operations on characters.

Let see the following program, that contain some operations between two numbers.

Example:

Program exam_variable;

uses wincrt;

const Num1=10;

 Num2=25;

Var

 Sum : Integer;

 Mul, division :real;

Begin

 Sum := Num1 + Num2; {addition}

 Write(‘The Sum is = ‘); Writeln(Sum);

 Mul := Num1 * Num2; {multiplication}

 Write(‘The product is = ‘); Writeln(Mul);

 division := Num1 / Num2; {division}

 Write(‘The division is = ‘); Writeln(division);

End.

In this example, the declaration part consists the keyword 'uses’, ‘const’ and ‘var'. The terms
'Num1', 'Num2' are the identifier for the const. 'Sum', 'Mul' and 'division' are the identifier for the
variables which store any numbers. In the example above, these variables are assigned to as
integers and real respectively. The term 'integer' means any whole number, i.e. a number which
is not a decimal number but a positive or negative number.

The variables 'Num1', 'Num2', 'Sum', 'Mul' and 'division' are terms which are not reserved words,
but can be used as identifier for constant and variables in the program to store data in them. They
could be changed more than once. Moreover, we could have used 'number1', 'number2' and
'totalsum' (note that there must be no spaces within the variables), instead of 'Num1', 'Num2' and
'Sum', respectively. It is much better to shorten the variables than writing long words, such as
'variable_number1'.

In the program above, both of the two types of 'write' are used. These are 'write' and 'writeln'.
Both has the same function, except that the 'write' function, does not proceed to the following
line when writing a statement. When using these two terms, any message that will be typed in
between the brackets and the inverted commas '(' ')', is displayed on the screen. However, if a
variable is used instead of a message, without using the inverted commas, it will display the

12

stored variable in the memory, on the screen. For example, statement writeln(Sum) will not

display 'Sum' on the screen, but the stored number of variable sum in the memory

DATA TYPES

In Pascal there are several predefined data types, which can be devided into three groups: ordinal
types, real types and strings.

Ordinal type

Ordinal types are based on the concept of order or sequence. Not only can you compare two
values to see which is higher, but you can also ask for the value following or preceding a given
value or compute the lowest or highest possible value.

Integer

The three most inportant predefined ordinal types are Integer, Boolean and Char (character).
However, there a number of other related types that have the same meaning but adifferent
internal representation and range of values. The following Table 1. lists the ordinal data types
used for representing numbers.

Type Size Range

 Byte 1 byte 0 s/d +255

Shortint 1 byte -128 s/d +127

 integer 2 bytes -32768 s/d 32767

Word 2 bytes 0 s/d 65535

Longint 4 bytes -2147483648 s/d 2147483647

Boolean

The Boolean data type can have only two values: TRUE and FALSE.

Char

Character can be represented with their symbolic notation, as in ‘k’, or with a numeric notation,
as in #78. The latter can also be expressed using the Chr function, as in Chr(78). the opposite
conversion can be done with Ord function.

It is generally better to use the symbolic notation when indicating letters, digits, or symbols.
When referring to special characters, instead, you’ll generally use the numeric notation. The
following list includes some of the most commonly used special characters:

Special character Numeric notation

tabulator #9

New line #10

Carriage return (enter key) #13

13

Real Type

Real types represent floating-point numbers in various formats. The smallest storage size is given
by Single numbers, which are implemented with a 4-byte value. The Table 2 below shows real
data types.

 Types Size Range

real 6 bytes 2.9 x 10
-39

 s/d 1.7 x10
38

single 4 bytes 1.5 x 10
-45

 s/d 3.4 x 10
38

double 8 bytes 5.0 x 10
-324

 s/d 1.7 x 10
308

extended 10 bytes 3.4 x 10
-4932

 s/d 1.1 x 10
4932

comp 8 bytes -9.2x 10
18

 s/d 9.2x 10
18

String

You can access a specific character in a string if you put the number of the position of that
character in square brackets behind a string.

program Strings;

var

 s: String;

 c: Char;

begin

 s := 'Hello';

 c := s[1];{c = 'H'}

end.

You can get the length of a string using the Length command.

program Strings;

var

 s: String;

 l: Integer;

begin

 s ;= 'Hello';

 l := Length(s);{l = 5}

end.

To find the position of a string within a string use the Pos command.
Parameters:
1: String to find
2: String to look in

14

program Strings;

var

 s: String;

 p: Integer;

begin

 s := 'Hello world';

 p := Pos('world',s);

end.

The Delete command removes characters from a string.
Parameters:
1: String to delete characters from
2: Position to start deleting from
3: Amount of characters to delete

program Strings;

var

 s: String;

begin

 s ;= 'Hello';

 Delete(s,1,1);{s = 'ello'}

end.

The Copy command is like the square brackets but can access more than just one character.
Parameters:
1: String to copy characters from
2: Position to copy from
3: Amount of characters to copy

program Strings;

var

 s, t: String;

begin

 s ;= 'Hello';

 t := Copy(s,1,3);{t = 'Hel'}

end.

Insert will insert characters into a string at a certain position.
Parameters:
1: String that will be inserted into the other string
2: String that will have characters inserted into it
3: Position to insert characters

15

program Strings;

var

 s: String;

begin

 s := 'Hlo';

 Insert('el',s,2);

end.

The ParamStr command will give you the command-line parameters that were passed to a
program. ParamCount will tell you how many parameters were passed to the program.
Parameter 0 is always the program's name and from 1 upwards are the parameters that have been
typed by the user.

program Strings;

var

 s: String;

 i: Integer;

begin

 s := ParamStr(0);

 i := ParamCount;

end.

INPUT

Input is what comes into the program. It can be from the keyboard, the mouse, a file on disk, a
scanner, a joystick, etc.

We will not get into mouse input in detail, because that syntax differs from machine to machine.
In addition, today's event-driven windowing operating systems usually handle mouse input for
you.

The basic format for reading in data is:

read (Variable_List);

Variable_List is a series of variable identifiers separated by commas.

read treats input as a stream of characters, with lines separated by a special end-of-line

character. readln, on the other hand, will skip to the next line after reading a value, by
automatically moving past the next end-of-line character:

readln (Variable_List);

Suppose you had this input from the user, and a, b, c, and d were all integers.

45 97 3

1 2 3

16

Here are some sample read and readln statements, along with the values read into the
appropriate variables.

Statement(s) a b c d

read (a);

read (b); 45 97

readln (a);

read (b); 45 1

read (a, b, c,

d); 45 97 3 1

readln (a, b);

readln (c, d); 45 97 1 2

When reading in integers, all spaces are skipped until a numeral is found. Then all subsequent
numberals are read, until a non-numeric character is reached (including, but not limited to, a
space).

8352.38

When an integer is read from the above input, its value becomes 8352. If, immediately
afterwards, you read in a character, the value would be '.' since the read head stopped at the
first alphanumeric character.

Suppose you tried to read in two integers. That would not work, because when the computer

looks for data to fill the second variable, it sees the '.' and stops since it couldn't find any data
to read.

With real values, the computer also skips spaces and then reads as much as can be read.
However, many Pascal compilers place one additional restriction: a real that has no whole part

must begin with 0. So .678 is invalid, and the computer can't read in a real, but 0.678 is fine.

Make sure that all identifiers in the argument list refer to variables! Constants cannot be assigned
a value, and neither can literal values.

OUTPUT

For writing data to the screen, there are also two statements, one of which you've seen already in
last chapter's programming assignment:

write (Argument_List);

writeln (Argument_List);

The writeln statement skips to the next line when done.

You can use strings in the argument list, either constants or literal values. If you want to display
an apostrophe within a string, use two consecutive apostrophes. Displaying two consecutive
apostrophes would then requires you to use four. This use of a special sequence to refer to a
special character is called escaping, and allows you to refer to any character even if there is no
key for it on the keyboard.

17

Formatting Output

Formatting output is quite easy. For each identifier or literal value on the argument list, use:

Value : field_width

The output is right-justified in a field of the specified integer width. If the width is not long
enough for the data, the width specification will be ignored and the data will be displayed in its
entirety (except for real values — see below).

Suppose we had:

write ('Hi':10, 5:4, 5673:2);

The output would be (that's eight spaces before the Hi and three spaces after):

Hi 55673

For real values, you can use the aforementioned syntax to display scientific notation in a
specified field width, or you can convert to fixed decimal-point notation with:

Value : field_width : decimal_field_width

The field width is the total field width, including the decimal part. The whole number part is
always displayed fully, so if you have not allocated enough space, it will be displayed anyway.
However, if the number of decimal digits exceeds the specified decimal field width, the output
will be displayed rounded to the specified number of places (though the variable itself is not
changed).

write (573549.56792:20:2);

would look like (with 11 spaces in front):

 573549.57

STANDARD FUNCTIONS

Pascal has several standard mathematical functions that you can utilize. For example, to find the

value of sin of pi radians:

value := sin (3.1415926535897932);

Note that the sin function operates on angular measure stated in radians, as do all the
trigonometric functions. If everything goes well, value should become 0.

Functions are called by using the function name followed by the argument(s) in parentheses.
Standard Pascal functions include:

18

Function Description Argument type Return type

abs absolute value real or integer same as argument

arctan arctan in radians real or integer real

cos cosine of a radian measure real or integer real

exp e to the given power real or integer real

ln natural logarithm real or integer real

round round to nearest integer real integer

sin sin of a radian measure real or integer real

sqr square (power 2) real or integer same as argument

sqrt square root (power 1/2) real or integer real

trunc truncate (round down) real or integer integer

For ordinal data types (integer or char), where the allowable values have a distinct predecessor
and successor, you can use these functions:

Function Description Argument type Return type

chr character with given ASCII value integer char

ord ordinal value integer or char integer

pred predecessor integer or char same as argument type

succ successor integer or char same as argument type

Real is not an ordinal data type! That's because it has no distinct successor or predecessor. What

is the successor of 56.0? Is it 56.1, 56.01, 56.001, 56.0001?

However, for an integer 56, there is a distinct predecessor — 55 — and a distinct successor —
57.

The same is true of characters:

'b'

Successor: 'c'

Predecessor: 'a'

Conversions

The Str command converts an integer to a string.

program Convert;

var

 s: String;

 i: Integer;

begin

 s ;= '123';

19

 Str(i,s);

end.

The Val command converts a string to an integer.

program Convert;

var

 s: String;

 i: Integer;

begin

 i ;= 123;

 Val(s,i,i);

end.

Int Will give you the number before the comma in a real number.

program Convert;

var

 r: Real;

begin

 r := Int(3.14);

end.

Frac will give you the number after the comma in a real number.

program Convert;

var

 r: Real;

begin

 r := Frac(3.14);

end.

Round will round off a real number to the nearest integer.

program Convert;

var

 i: Integer;

begin

 i := Round(3.14);

end.

Trunc will give you the number before the comma of a real number as an integer.

program Convert;

var

 i: Integer;

20

begin

 i := Trunc(3.14);

end.

Computers use the numbers 0 to 255(1 byte) to represent characters internally and these are
called ASCII characters. The Ord command will convert a character to number and the Chr
command will convert a number to a character. Using a # in front of a number will also convert it
to a character.

program Convert;

var

 b: Byte;

 c: Char;

begin

 c := 'a';

 b := Ord(c);

 c := Chr(b);

 c := #123;

end.

The UpCase command changes a character from a lowercase letter to and uppercase letter.

program Convert;

var

 c: Char;

begin

 c := 'a';

 c := UpCase(c);

end.

There is no lowercase command but you can do it by adding 32 to the ordinal value of an
uppercase letter and then changing it back to a character.

The Random command will give you a random number from 0 to the number you give it - 1. The
Random command generates the same random numbers every time you run a program so the
Randomize command is used to make them more random by using the system clock.

program Rand;

var

 i: Integer;

begin

 Randomize;

 i := Random(101);

end.

21

MAKING DECISIONS

Most programs need to make decisions. There are several statements available in the Pascal
language for this, that are IF THEN, IF THEN ELSE and CASE OF.

IF THEN

The format for the IF THEN statement is,

 if condition_is_true then

 execute_this_program_statement;

The condition (ie, A < 5) is evaluated to see if it's true. When the condition is true, the program
statement will be executed. If the condition is not true, then the statement following the keyword
then will be ignored.

To create the condition we need RELATIONAL OPERATORS. The RELATIONAL

OPERATORS, listed below, allow the programmer to test various variables against other
variables or values.

 = Equal to

 > Greater than

 < Less than

 <> Not equal to

 <= Less than or equal to

 >= Greater than or equal to

Example :

program exam_IF;

var number, guess : integer;

begin

 number := 2;

 writeln('Guess a number between 1 and 10');

 readln(guess);

 if number = guess then writeln('You guessed correctly. Good on you!');

 if number <> guess then writeln('Sorry, you guessed wrong.')

end.

Executing more than one statement as part of an IF

To execute more than one statement when the condition is true, the statements are grouped
using the begin and end keywords. Whether a semi-colon follows the end keyword depends
upon what comes after it. When followed by another end or end. then it no semi-colon.

22

Example:

program IF_GROUP1;

var number, guess : integer;

begin

 number := 2;

 writeln('Guess a number between 1 and 10');

 readln(guess);

 if number = guess then

 begin

 writeln('Lucky you. It was the correct answer.');

 writeln('You are just too smart.')

 end; { We put a semi-colon after the end keyword because it followed by

another if statement}

 if number <> guess then writeln('Sorry, you guessed wrong.')

end.

Example:

program IF_GROUP2;

var number, guess : integer;

begin

 number := 2;

 writeln('Guess a number between 1 and 10');

 readln(guess);

 if number = guess then

 begin

 writeln('Lucky you. It was the correct answer.');

 writeln('You are just too smart.')

 end { there is no semi-colon after end keyword because it followed by end.}
end.

IF THEN ELSE

The IF statement can also include an ELSE statement, which specifies the statement (or block or
group of statements) to be executed when the condition associated with the IF statement is false.

Example:

Rewriting the previous program using an IF THEN ELSE statement, yields:

program IF_ELSE_DEMO;

var number, guess : integer;

begin

 number := 2;

 writeln('Guess a number between 1 and 10');

 readln(guess);

 if number = guess then

 writeln('You guessed correctly. Good on you!')

 else

 writeln('Sorry, you guessed wrong.')

end.

If you want to execute more than one statement when a condition is true (or false) then use the
begin and end keywords to make group blocks of code together.

23

Example:
Consider the following portion of code,

 if number = guess then

 begin

 writeln('You guessed correctly. Good on you!');

 writeln('It may have been a lucky guess though')

 end {no semi-colon if followed by an else }

 else

 begin

 writeln('Sorry, you guessed wrong.');

 writeln('Better luck next time')

 end; {semi-colon depends on next keyword }

NESTED IF

A nested if statement is an if statement within another if statement. The syntax of a nested if

statement is:

If (this happens) then {if 1}

 If (this happens) then {if 2}

 (do this) etc...

 Else (do this) {if 2}

 Else (do this) etc... {if 1}

Example:

program Decisions;

uses wincrt;

var

 i: Integer;

begin

 Writeln('Enter a number');

 Readln(i);

 if i > 0 then

 Writeln('Positive')

 else

 if i < 0 then

 Writeln('Negative')

 else

 Writeln('Zero');

end.

Logical Operators and Boolean Expressions

The logical operators are expressions which return a false or true result over a conditional
expression. Such operators consist of simple logical operators, such as 'Not' or 'And'. They
should be used between two conditional expressions ;

for example:
If (x = 0) AND (a = 2) then...

24

There are three types of logical operators, each of which are concerned with conditional
expressions. These are: AND,OR,NOT.

AND yields TRUE only if both values are TRUE:

Expression 1 Expression 2 AND (result)

true true true

false true false

true false false

false false false

Example:

Program exam_And;

Uses Crt;

Var n1, n2 : string;

Begin

 Writeln('Enter two numbers: (''0'' & ''0'' to exit)');

 Repeat

 Write('No.1: ');

 Readln(n1);

 Write('No.2: ');

 Readln(n2);

 If (n1 = '0') AND (n2 = '0') then Halt(0);

 Until (n1 = '0') AND (n2 = '0');

End.

OR yields TRUE if at least one value is TRUE:

Expression 1 Expression 2 OR (result)

true true true

false true true

true false true

false false false

example:

Program exam_OR;

Uses Crt;

Var n1, n2 : String;

Begin

 Writeln('Enter two numbers: (''1'' & ''2'' to exit)');

 Repeat

25

 Write('No.1: '); Readln(n1);

 Write('No.2: '); Readln(n2);

 If (n1 = '1') OR (n2 = '2') then Halt;

 Until (n1 = '1') OR (n2 = '2');

End.

Not is almost different from the two logical gates. It only accepts one input and is well-known as
the 'inverter'. If for example the result of two conditional expressions is true, the 'not' operator
would invert the result to false! So, the of the logical operator, 'not', is to output the inverse of
the input.

The simple truth table for the not operator is:

Input Output

true false

false true

example:

Program exam_Not;

Uses Crt;

Var n1 : String;

Begin

 Writeln('Enter two numbers: (any number except 0 to exit)');

 Repeat

 Write('No.1: '); Readln(n1);

 If not(n1 = '0') then Halt;

 Until not(n1 = '0');

End.

The Boolean Expressions

The boolean expressions are the terms 'true' and 'false'. These are simply similar to 1's (for true)
and 0's(for false). They describe an expression whether it is false or true. The variable types over
boolean expressions is the 'boolean' type. Example:

Var bool : Boolean;

Example Program:

Program exam_Boolean;

Var quit : Boolean;

 a : String;

Begin

 Repeat

 Write('Type ''exit'' to quit:');

 Readln(a);

 If a = 'exit' then quit := True else quit := False;

 If quit = True then Halt;

 Until quit = True;

26

End.

CASE OF

In some cases the 'case statement' is preferred to the if statement because it reduces some
unnecessary code but the same meaning is retained. The case statement is very similar to the if
statement, except in that the it does not accept literal conditional expressions (i.e.: strings) but it
allows single character conditional expressions.

Suppose you wanted to branch one way if b is 1, 7, 2037, or 5; and another way if otherwise.

You could do it by:

if (b = 1) or (b = 7) or (b = 2037) or (b = 5) then

 Statement1

else

 Statement2;

But in this case, it would be simpler to list the numbers for which you want Statement1 to
execute. You would do this with a case statement:

case b of

 1,7,2037,5: Statement1;

 otherwise Statement2

end;

The general form of the case statement is:

 case selector of

 List1: Statement1;

 List2: Statement2;

 ...

 Listn: Statementn;

 otherwise Statement

 end;

The otherwise part is optional. When available, it differs from compiler to compiler. In many
compilers, you use the word else instead of otherwise.

selector is any variable of an ordinal data type (integer or char ONLY). You may not use reals!

b =

1,7,2037,5

?

Statement 1 Statement 2

27

Example:

Consider the following code portion written using if else statements,

 if operator = '*' then result := number1 * number2

 else if operator = '/' then result := number1 / number2

 else if operator = '+' then result := number1 + number2

 else if operator = '-' then result := number1 - number2

 else invalid_operator = 1;

Rewriting this using case statements,

 case operator of

 '*' : result:= number1 * number2;

 '/' : result:= number1 / number2;

 '+' : result:= number1 + number2;

 '-' : result:= number1 - number2;

 otherwise invalid_operator := 1

 end;

The value of operator is compared against each of the values specified. If a match occurs, then

the program statement(s) associated with that match are executed.

If operator does not match, it is compared against the next value. The purpose of the otherwise

clause ensures that appropiate action is taken when operator does not match against any of the

specified cases.

Program exam_case;

Uses Crt;

Label Return; {used respectively with the goto statement; beware of it}

Var SEL : Integer;

 YN : Char;

Begin

 Return: Clrscr;

 Writeln('[1].PLAY GAME');

 WRITELN('[2].LOAD GAME');

 WRITELN('[3].MULTIPLAYER');

 WRITELN('[4].EXIT GAME');

 Writeln('note: Do note press anything except');

 Writeln('numbers; otherwise an error occurs!');

28

 Readln(SEL);

 If SEL = 1 then

 Begin

 Writeln('Are you able to create a game');

 Writeln('of yourself using pascal??');

 Goto Return;

 End;

 If SEL = 2 then

 Begin

 Writeln('Ahhh... no saved games');

 Goto Return;

 End;

 If SEL = 3 then

 Begin

 Writeln('networking or 2 players?');

 Goto Return;

 End;

 If SEL = 4 then

 Begin

 Writeln('Exit?');

 YN := Readkey;

 If YN = 'y' then

 Begin

 Writeln('Nooooooooooooo...');

 Halt; {EXIT PROGRAM}

 End;

 If YN = 'n' then

 Goto Return;

 End;

End.

The program below is written using the case statement and the output is almost the same

Program exam_case1;

Uses Crt;

Label Return; {use of the goto statement is not recommended..avoid it}

Var SEL : Integer;

 YN : Char;

Begin

 Return:Clrscr;

 Writeln('[1].PLAY GAME');

 WRITELN('[2].LOAD GAME');

 WRITELN('[3].MULTIPLAYER');

 WRITELN('[4].EXIT GAME');

 Writeln('note: Do note press anything except');

 Writeln('numbers; otherwise an error occurs!');

 Readln(SEL);

 Case SEL of

 1 : Begin

 Writeln('Are you able to create');

 Writeln('a game of yourself using pascal??');

 Goto Return;

 End;

 2 : Begin

 Writeln('Ahhh... no saved games');

29

 Goto Return;

 End;

 3 : Begin

 Writeln('networking or 2 players?');

 Goto Return;

 End;

 4 : Begin

 Writeln('Exit?');

 YN := Readkey;

 Case YN of {a sort of a nested case statement}

 'y' : Begin

 Writeln('Nooooooooooooo...');

 Halt;

 End;

 'n' : Goto Return;

 End;{End Case2}

 End;{Close Conditional Expression 4}

 End; {End Case1}

End.

Another example:

program exam_case2;

uses

 wincrt;

var

 Choice: Char;

begin

 Writeln('Which on of these do you like?');

 Writeln('a - Apple:');

 Writeln('b - Banana:');

 Writeln('c - Carrot:');

 Choice := ReadKey;

 case Choice of

 'a': Writeln('You like apples');

 'b': Writeln('You like bananas');

 'c': Writeln('You like carrots');

 else;

 Writeln('You made an invalid choice');

 end;

end.

LOOPS

Looping means repeating a statement or compound statement over and over until some condition

is met.

Loops are used when you want to repeat code a lot of times. For example, if you wanted to print

"Hello" on the screen 10 times you would need 10 Writeln commands. You could do the same

thing by putting 1 Writeln command inside a loop which repeats itself 10 times.

There are three types of loops:

30

• fixed repetition - only repeats a fixed number of times
• pretest - tests a Boolean expression, then goes into the loop if TRUE
• posttest - executes the loop, then tests the Boolean expression

FOR..DO

The most common loop in Pascal is the FOR loop. The statement inside the for block is executed

a number of times depending on the control condition. In Pascal, the fixed repetition loop is the

for loop. The general form is:

 for index := StartingLow to EndingHigh do

 statement;

The index variable must be of an ordinal data type. You can use the index in calculations within

the body of the loop, but you should not change the value of the index. An example of using the

index is:

sum := 0;

for count := 1 to 100 do

 sum := sum + count;

If you want to have more than 1 command inside a loop then you must put them between a begin

and an end.

for index := StartingLow to EndingHigh do

 begin

statement_1;

statement_2;

...

statement_n;

 end;

Example:

program exam_Loops;

uses wincrt;

var

 i: Integer;

begin

 for i := 1 to 10 do

 begin

Write('Hello');

Writeln(' world');

end

end.

31

In the for-to-do loop, the starting value MUST be lower than the ending value, or the loop will

never execute! If you want to count down, you should use the for-downto-do loop:

 for index := StartingHigh downto EndingLow do

 statement;

In Pascal, the for loop can only count in increments (steps) of 1.

The following program illustrates the for..do loop.

 program CELCIUS_TABLE;

 var celcius : integer; farenhiet : real;

 begin

 writeln('Degree''s Celcius Degree''s Farenhiet');

 for celcius := 1 to 20 do

 begin

 farenhiet := (9 / 5) * celcius + 32;

 writeln(celcius:8, ' ',farenhiet:16:2)

 end

 end.

EXERCISE

What is the resultant output when this program is run.

 program FOR_TEST (output);

 var s, j, k, i, l : integer;

 begin

 s := 0;

 for j:= 1 to 5 do

 begin

 write(j);

 s := s + j

 end;

 writeln(s);

 for k := 0 to 1 do write(k);

 for i := 10 downto 1 do writeln(i);

 j := 3; k := 8; l := 2;

 for i := j to k do writeln(i + l)

 end.

NESTED LOOPS
A for loop can occur within another, so that the inner loop (which contains a block of statements)
is repeated by the outer loop.

RULES RELATED TO NESTED FOR LOOPS
1. Each loop must use a separate variable
2. The inner loop must begin and end entirely within the outer loop.

Exercise:

32

Determine the output of the following program,

 program NESTED_FOR_LOOPS;

 var line, column : integer;

 begin

 writeln('LINE');

 for line := 1 to 6 do

 begin

 write(line:2);

 for column := 1 to 4 do

 begin

 write('COLUMN':10); write(column:2)

 end;

 writeln

 end

 end.

Programming Assignment

The factorial of an integer is the product of all integers up to and including that integer, except

that the factorial of 0 is 1.

 eg, 3! = 1 * 2 * 3 (answer=6)

Evaluate the factorial of an integer less than 20, for five numbers input successively via the

keyboard.

WHILE..DO

The pretest loop has the following format:

 while BooleanExpression do

 statement;

This type of loop is executed while the condition is true. The loop continues to execute until the

Boolean expression becomes FALSE. In the body of the loop, you must somehow affect the

Boolean expression by changing one of the variables used in it. Otherwise, an infinite loop will

result:

a := 5;

while a < 6 do

 writeln (a);

Remedy this situation by changing the variable's value:

33

a := 5;

while a < 6 do

 begin

 writeln (a);

 a := a + 1

 end;

The WHILE ... DO loop is called a pretest loop because the condition is tested before the body of

the loop executes. So if the condition starts out as FALSE, the body of the while loop never

executes.

Program exam_while;

Uses wincrt;

Var Ch : Char;

Begin

 Writeln('Press ''q'' to exit...');

 Ch := Readkey;

 While Ch <> 'q' do

 Begin

 Writeln('I told you press ''q'' to exit!!');

 Ch := Readkey;

 End;

End.

REPEAT..UNTIL

The posttest loop has the following format:

 repeat

 statement1;

 statement2

 until BooleanExpression;

In a repeat loop, compound statements are built-in -- you don't need to use begin-end. Also, the

loop continues until the Boolean expression is TRUE, whereas the while loop continues until the

Boolean expression is FALSE.

This loop is called a posttest loop because the condition is tested after the body of the loop

executes. The REPEAT loop is useful when you want the loop to execute at least once, no matter

what the starting value of the Boolean expression is.

Program exam_repeat;

Uses wincrt;

Var YN : String;

Begin

 Writeln('Y(YES) or N(NO)?');

 Repeat {repeat the code for at least one time}

 YN := Readkey ;

 If YN = 'y' then Halt; {Halt - exit}

 If YN = 'n' then Writeln('Why not? Exiting...');

34

 Until (YN = 'y') OR (YN = 'n');

End.

If you want to use more than one condition for either the while or repeat loops then you have to
put the conditions between brackets.

program exam_Loops;

uses wincrt;

var

 i: Integer;

 s: String;

begin

 i := 0;

 repeat

 i := i + 1;

 Write('Enter a number: ');

 Readln(s);

 until (i = 10) or (s = 0);

end.

ONE-DIMENSIONAL ARRAYS

Suppose you wanted to read in 5000 integers and do something with them. How would you store
the integers?

You could use 5000 variables, lapsing into:

 aa, ab, ac, ad, ... aaa, aab, ... aba, ...

But this would grow tedious (after declaring those variables, you have to read values into each of
those variables).

An array contains several storage spaces, all the same type. You refer to each storage space with
the array name and with a subscript. The type definition is:

 type

 typename = array [enumerated_type] of another_data_type;

The data type can be anything, even another array. Any enumerated type will do. You can
specify the enumerated type inside the brackets, or use a predefined enumerated type. In other
words,

 type

 enum_type = 1..50;

 arraytype = array [enum_type] of integer;

is equivalent to

 type

 arraytype = array [1..50] of integer;

35

Arrays are useful if you want to store large quantities of data for later use in the program. They
work especially well with for loops, because the index can be used as the subscript. To read in
50 numbers, assuming the following definitions:

 type

 arraytype = array[1..50] of integer;

 var

 myarray : arraytype;

use:

 for count := 1 to 50 do

 read (myarray[count]);

We access each of the elements using the number of the elements behind it in square brackets.

program Arrays;

var

 a: array[1..5] of Integer;

begin

 a[1] := 12;

 a[2] := 23;

 a[3] := 34;

 a[4] := 45;

 a[5] := 56;

end.

It is a lot easier when you use a loop to access the values in an array. Here is an example of
reading in 5 values into an array:

program Arrays;

var

 a: array[1..5] of Integer;

 i: Integer;

begin

 for i := 1 to 5 do

 Readln(a[i]);

end.

Sorting arrays

You will sometimes want to sort the values in an array in a certain order. To do this you can use
a bubble sort. A bubble sort is only one of many ways to sort an array but it is the most popular.
In a bubble sort the biggest numbers are moved to the end of the array.

You will need 2 loops. One to go through each number and another to point to the other number
that is being compared. If the number is greater then it is swapped with the other one. You will
need to use a temporary variable to store values while you are swapping them.

36

program Arrays;

var

 a: array[1..5] of Integer;

 i, j, tmp: Integer;

begin

 a[1] := 23;

 a[2] := 45;

 a[3] := 12;

 a[4] := 56;

 a[5] := 34;

 for i := 1 to 4 do

 for j := i to 5

 if a[j] > a[j + 1] then

 begin

 tmp := a[j];

 a[j] := a[j + 1];

 a[j + 1] := tmp;

 end

end.

TWO DIMENSIONAL ARRAYS

Arrays can have 2 dimensions instead of just one. In other words they can have rows and
columns instead of just rows.

 1 2 3

1 1 2 3

2 4 5 6

3 7 8 9

Here is how to declare a 2D array:

program Arrays;

var

 a: array [1..3,1..3] of Integer;

begin

end.

To access the values of a 2d array you must use 2 numbers in the square brackets. 2D arrays also
require 2 loops instead of just one.

program Arrays;

var

 r, c: Integer;

 a: array [1..3,1..3] of Integer;

begin

 for r := 1 to 3 do

37

 for c := 1 to 3 do

 Readln(a[r,c]);

end.

ENUMERATED DATA TYPES

Enumerated variables are defined by the programmer. It allows you to create your own data
types, which consist of a set of symbols. You first create the set of symbols, and assign to them a
new data type variable name.

You can declare your own ordinal data types. You do this in the type section of your program:

type

 datatypeidentifier = typespecification;

One way to do it is by creating an enumerated type. An enumerated type specification has the
syntax:

(identifier1, identifier2, ... identifiern)

For example, if you wanted to declare the months of the year, you would do a type:

type

 MonthType = (January, February, March, April,

 May, June, July, August, September,

 October, November, December);

You can then declare a variable:

var

 Month : MonthType;

You can assign any enumerated value to the variable:

Month := January;

All the ordinal functions are valid on the enumerated type. ord(January) = 0, and
ord(December) = 11.

type civil_servant = (clerk, police_officer, teacher, mayor);

 var job, office : civil_servant;

The new data type created is civil_servant. It is a set of values, enclosed by the () parenthesis.
These set of values are the only ones which variables of type civil_servant can assume or be
assigned.

The next line declares two working variables, job and office, to be of the new data type
civil_servant.

38

The following assignments are valid,

 job := mayor;

 office := teacher;

 if office = mayor then writeln('Hello mayor!');

The list of values or symbols between the parenthesis is an ordered set of values. The first
symbol in the set has an ordinal value of zero, and each successive symbol has a value of one
greater than its predecessor.

 police_officer < teacher

evaluates as true, because police_officer occurs before teacher in the set.

MORE EXAMPLES ON ENUMERATED DATA TYPES

 type beverage = (coffee, tea, cola, soda, milk, water);

 color = (green, red, yellow, blue, black, white);

 var drink : beverage;

 chair : color;

 drink := coffee;

 chair := green;

 if chair = yellow then drink := tea;

ADDITIONAL OPERATIONS WITH USER DEFINED VARIABLE TYPES
Consider the following code,

 type Weekday = (Monday, Tuesday, Wednesday, Thursday, Friday);

 var Workday : Weekday;

The first symbol of the set has the value of 0, and each symbol which follows is one greater.
Pascal provides three additional operations which are performed on user defined variables. The
three operations are,
 ord(symbol) returns the value of the symbol, thus ord(Tuesday)

 will give a value of 1

 pred(symbol) obtains the previous symbol, thus

 pred(Wednesday) will give Tuesday

 succ(symbol) obtains the next symbol, thus succ(Monday)

 gives Tuesday

Enumerated values can be used to set the limits of a for statement, or as a constant in a case
statement, eg,

 for Workday := Monday to Friday

 case Workday of

 Monday : writeln('Mondays always get me down.');

 Friday : writeln('Get ready for partytime!')

39

 end;

Enumerated type values cannot be input from the keyboard or outputted to the screen, so the
following statements are illegal,

 writeln(drink);

 readln(chair);

A few restrictions apply, though: enumerated types are internal to a program -- they can neither
be read from nor written to a text file. You must read data in and convert it to an enumerated
type. Also, the identifier used in the type (such as January) cannot be used in another type.

One purpose of an enumerated type is to allow you, the programmer, to refer to meaningful
names for data. In addition, enumerated types allow functions and procedures to be assured of a
valid parameter, since only variables of the enumerated type can be passed in and the variable
can only have one of the several enumerated values

SELF TEST ON ENUMERATED DATA TYPES
Whats wrong with?

 type Day = (Monday, Tuesday, Wednesday, Thursday, Friday, Saturday,

 Sunday);

 var Today : Day;

 for Today := Sunday to Monday do

 begin

 writeln(Today);

 Today := succ(Today)

 end;

Whats wrong with

 type COLOR = (Red, Blue, Green, Yellow);

 var Green, Red : COLOR;

SUBRANGES
A subrange type is defined in terms of another ordinal data type.

Just as you can create your own set of pre-defined data types, you can also create a smaller
subset or subrange of an existing set which has been previously defined. Each subrange consists
of a defined lower and upper limit. The type specification is:

lowest_value .. highest_value

where lowest_value < highest_value and the two values are both in the range of another ordinal
data type.

For example, you may want to declare the days of the week as well as the work week:

40

type

 DaysOfWeek = (Sunday, Monday, Tuesday, Wednesday,

 Thursday, Friday, Saturday);

 DaysOfWorkWeek = Monday..Friday;

Consider the following,

 type DAY = (Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday);

 Weekday = Monday..Friday; {subrange of DAY}

 Weekend = Saturday..Sunday; {subrange of DAY}

 Hours = 0..24; {subrange of integers}

 Capitals= 'A'..'Z'; {subrange of characters)

 NOTE: You cannot have subranges of type real.

Which of the following are legal
 type Gradepoints = 0.0..4.0;

 Numbers = integer;

 Alphabet = 'Z'..'A';

Answer:

Which of the following are legal....NONE ARE!

 Cannot have subranges of real type

 Cannot do this, must be Numbers = 1..500;

 Cannot do this, must be Alphabet = 'A'..'Z' as 'A' comes before 'Z'

RECORDS

It is possible to create your own variable types using the type statement. The first type you can
make is records. Records are 2 or more variables of different types in one. A record allows you
to keep related data items in one structure. To declare a record, you'd use:

 TYPE

 TypeName = record

 identifierlist1 : datatype1;

 ...

 identifierlistn : datatypen;

 end;

An example of how this could be used is for a student who has a student number and a name.
Here is how you create a type:

Type

 Student = Record

 Number: Integer;

 Name: String;

 end;

After you have created the type you must declare a variable of that type to be able to use it.

program Types;

Type

 StudentRecord = Record

 Number: Integer;

41

 Name: String;

 end;

var

 Student: StudentRecord;

begin

end.

If you want information about a person, you may want to know name, age, city, state, and zip,
then you must declare:

 type

 InfoType = record

 Name : string;

 Age : integer;

 City, State : String;

 Zip : integer;

 end;
var person : InfoType

Each of the identifiers Name, Age, City, State, and Zip are referred to as fields. You access a
field within a variable by:

 VariableIdentifier.FieldIdentifier

A period separates the variable and the field name.

To access the Number and Name parts of the record you must do the following:

program exam_record;

uses wincrt;

Type

 StudentRecord = Record

 Number: Integer;

 Name: String;

 end;

var

 Student: StudentRecord;

begin

Student.Number := 12345;

Student.Name := 'John Smith';

writeln(‘Number : ‘,Student.Number);

writeln(‘Name : ‘,Student.Name);

end.

There's a very useful statement for dealing with records. If you are going to be using one record
variable for a long time and don't feel like typing the variable name over and over, you can strip
off the variable name and use only field identifiers. You do this by:

 WITH RecordVariable DO

 BEGIN

42

 ...

 END;

Example:

 with student do

 begin

 Number := 12345;

 Name := 'John Smith';

 writeln(‘Number : ‘,Number);

 writeln(‘Name : ‘,Name);

 end;

PROCEDURES

Procedures are sub-programs that can be called from the main part of the program. Procedures
are declared outside of the main program body using the procedure keyword. Procedures must
also be given a unique name. Procedures have their own begin and end. Here is an example of
how to make a procedure called Hello that prints "Hello" on the screen.

program Procedures;

procedure Hello;

begin

 Writeln('Hello');

end;

begin

end.

To use a procedure we must call it by using its name in the main body.

program Procedures;

procedure Hello;

begin

 Writeln('Hello');

end;

begin

 Hello;

end.

To have an exact definition of a procedure, you should compare a program which includes a
repeated section with another program avoiding the repeated sections by using a procedure,
which is called several times:

Program exam_proc1;

Uses wincrt;

Var Counter : Integer;

Begin

 textcolor(green);

 GotoXy(10,5);

43

 For Counter := 1 to 10 do

 Begin {Step [1]}

 write(chr(196)); {Step [2]}

 End; {Step [3]}

 GotoXy(10,6);

 For Counter := 1 to 10 do

 Begin {Step [1]}

 write(chr(196)); {Step [2]}

 End; {Step [3]}

 GotoXy(10,7);

 For Counter := 1 to 10 do

 Begin {Step [1]}

 write(chr(196)); {Step [2]}

 End; {Step [3]}

 GotoXy(10,10);

 For Counter := 1 to 10 do

 Begin {Step [1]}

 write(chr(196)); {Step [2]}

 End; {Step [3]}

 Readkey;

End.

Now have a look at the next program which uses a procedure:

Program exam_proc2;

Uses wincrt;

Procedure DrawLine;

{This procedure helps me to

 avoid the repetition of steps [1]..[3]}

Var Counter : Integer;

Begin

 textcolor(green);

 For Counter := 1 to 10 do

 Begin {Step [1]}

 write(chr(196)); {Step [2]}

 End; {Step [3]}

End;

Begin

 GotoXy(10,5);

 DrawLine;

 GotoXy(10,6);

 DrawLine;

 GotoXy(10,7);

 DrawLine;

 GotoXy(10,10);

 DrawLine;

 Readkey;

End.

There are some differences between these two programs which are very important to note. These
are :

• Size of the program
It is very important for a program to be small in size. The first program, say, its size is 1900
bytes, but the second one holds about 1350 bytes!

44

• Neatness

Adopting a neat style of writing for a program helps the programmer (and other future
debuggers) to cater with future bugs. I think that the first program is cumbersome, whilst the
other is not! What do you think??!

• Repetitions

Repetitions in a program can cause a hard time for a programmer. So procedures are an essential
way to avoid repetitions in a program. They also enlarge the size of a program!

• Debugging Efficiency

When you are required to debug the program, bugs could be much more easier to find out as the
program is sliced into smaller chunks. You may run the program and notice a mistake at a certain
point and which is located in a particular procedure/function. It would be much more difficult to
find a mistake in a program if it would be one whole piece of code. Do slice your program into
smaller chunks, and this needs design of the whole problem in hand prior to coding.

Procedures must always be above where they are called from. Here is an example of a procedure
that calls another procedure.

program Procedures;

procedure Hello;

begin

 Writeln('Hello');

end;

procedure HelloCall;

begin

 Hello;

end;

begin

 HelloCall;

end.

Global and Local variables

The variables we have been using so far have been global because they can be used at any time
during the program. Local variables can only be used inside procedures but the memory they use
is released when the procedure is not being used. Local variables are declared just underneath the
procedure name declaration.

program Procedures;

procedure Print(s: String);

var

 i: Integer;

begin

 for i := 1 to 3 do

 Writeln(s);

end;

45

begin

 Print('Hello');

end.

Using Procedures with Parameters

Procedures can have parameters just like the other commands we have been using. Each
parameter is given a name and type and is then used just like any other variable. If you want to
use more than one parameter then they must be separated with semi-colons.

program Procedures;

procedure Print(s: String; i: Integer);

begin

 Writeln(s);

 Writeln(i);

end;

begin

 Print('Hello',3);

end.

Returning back to program exam_proc1, the gotoxy statement before the DrawLine; could be
"kicked off" so that we can avoid the repetition of the gotoxy! We cannot build up another
procedure for the gotoxy, but it should be done by adding parameters with the procedure. The
new program is as follows:

Program exam_proc3;

Uses wincrt;

Procedure DrawLine(X : Integer; Y : Integer);

 {the decleration of the variables in brackets are called

 parameters or arguments}

Var Counter : Integer; {this is called a local variable}

Begin

 GotoXy(X,Y); {use the parameters}

 textcolor(green);

 For Counter := 1 to 10 do

 Begin

 write(chr(196));

 End;

End;

Begin

 DrawLine(10,5);

 DrawLine(10,6);

 DrawLine(10,7);

 DrawLine(10,10);

 Readkey;

End.

Now, this program includes a procedure which uses parameters. Every time it is called, the
parameters can be variable, so that the position of the line could be changed. This time, we have
also eliminated the gotoxy statement before every DrawLine statement. The numbers in the
brackets of the DrawLine are the parameters which state the position of the line. They also serve
as a gotoxy statement.

46

When you apply parameters to a procedure, variables should be declared on there own, and must
be separated by a semi-colon ";". They are put in between the brackets, following the procedure
name. The variables (known as the parameters) should be used by the procedure/sub-program
only.

The Variable Parameter

Parameters of procedures may be variable. In this case, data may flow through the variable in
both ways. What I am trying to say is that you can pass data and get data through the procedure
using a variable parameter. Here is a declaration of a variable parameter:

Procedure <PROCEDURE_NAME(Var Variable_Name : Type);>

Here is an example of how to use a variable parameter and what's its purpose:

Program VAR_PARAM_EXAMPLE;

 Procedure Square(Index : Integer; Var Result : Integer);

 Begin

 Result := Index * Index;

 End;

Var

 Res : Integer;

Begin

 Writeln('The square of 5 is: ');

 Square(5, Res);

 Writeln(Res);

End.

FUNCTIONS

The second type of sub-program is called a function. The only difference from the procedure is
that the function return a value at the end.

Note that a procedure cannot return a value. A function start and end in a similar way to that of a
procedure. If more than one value is required to be returned by a module, you should make use
of the variable parameter.

A function can have parameters too. If you change the sub-program from procedure to a
function, of the previous program, there will be no difference in the output of the program. Just
make sure which one is best when you can to implement a module.

For example, if you don't need to return any values, a procedure is more best. However if a value
should be returned after the module is executed, function should be used instead.

47

program exam_Functions;

function Add(i, j:Integer): Integer;

begin

end;

begin

end.

Assigning the value of a function to a variable make the variable equal to the return value. If you
use a function in something like Writeln it will print the return value. To set the return value just
make the name of the function equal to the value you want to return.

program Functions;

var

 Answer: Integer;

function Add(i, j:Integer): Integer;

begin

 Add := i + j;

end;

begin

 Answer := Add(1,2);

 Writeln(Add(1,2));

end.

You can exit a procedure or function at any time by using the Exit command.

program Procedures;

procedure GetName;

var

 Name: String;

begin

 Writeln('What is your name?');

 Readln(Name);

 if Name = '' then

 Exit;

 Writeln('Your name is ',Name);

end;

begin

 GetName;

end.

Example of a program using a function:

Program exam_function;

Uses wincrt;

Var SizeA, sizeB : Real;

 YN : Char;

 unitS : String[2];

48

Function PythagorasFunc(A:Real; B:Real) : Real; {The pythagoras theorem}

Begin

 PythagorasFunc := SQRT(A*A + B*B);

{Output: Assign the procedure name to the value.If you forget to assign

the function to the value, you will get a trash value from the memory}

End;

Begin

 Repeat

 Writeln;

 Write('Enter the size of side A : ');

 Readln(sizeA);

 Write('Enter the size of side B : ');

 Readln(sizeB);

 Repeat

 Write('metres or centimetres? Enter : [m or cm] ');

 Readln(unitS);

 Until (unitS = 'm') or (unitS = 'cm');

 Writeln(PythagorasFunc(sizeA,sizeB),' ',unitS);

 Writeln;

 Write('Repeat? ');

 YN := Readkey;

 Until (YN in ['N','n']);

End.

REFERENCE:

http://pascalprogramming.byethost15.com
http://www.taoyue.com
http://www.geocities.com/SiliconValley/Horizon/5444/

