





### Packing types





NOT A CLOSEST PACKING





**CLOSEST PACKING** 



# Side-by-side packing

Expanding of side-by-side packing types

1. SIMPLE (PRIMITIVE) CUBIC (SC)

1. BODY CENTERED CUBIC (BCC)





# SIMPLE CUBIC (SC)





# 1. SIMPLE CUBIC (SC)







# 2. BODY CENTERED CUBIC (BCC)





# 2. BODY CENTERED CUBIC (BCC)







### Hexagonal packing

Expanding of hexagonal packing types

1. HEXAGONAL CLOSE PACKING (HCP)

2. CUBIC CLOSE PACKING (CCP or FCC)





#### Close Packing First and Second Layers





#### Hexagonal Close Packing (HCP)

 The third layer fits into the holes of the B layer such that the atoms lie above those in layer A.





### Hexagonal Close Packing (HCP)

By repeating this arrangement one obtains ABABAB... hexagonal closest packing











# Hexagonal Close Packing (HCP)

# NOT A CUBIC PACKING









#### 2.Cubic Close Packing (CCP or FCC)

 The third layer fits into the holes of the B and the atoms do not lie above those in





# 2. Cubic Close Packing (CCP or FCC)

By repeating this arrangement one obtains ABCABC............ cubic closest packing











# 2. Cubic Close Packing (CCP or FCC)





# Comparison of hcp & ccp





#### Unit Cell

#### Unit cell

- An imaginary parallel-sided region from which the entire crystal can be built up
- Usually the smallest unit cell which exhibits the greatest symmetry is chosen.

If repeated (translated) in 3 dimensions,
 the entire crystal is recreated.



#### Problem 1:

- Determine the number of atom per unit cell, coordination number and packing efficiency of:
  - -Simple cubic (SC)
  - Body center cubic (BCC)
  - Face center cubic (FCC)









#### Corner atom

# Corner atom = 1/8 atom per unit cell







#### Face atom

### Face atom = 1/2 atom per unit cell







#### Interior atom

#### Interior atom = 1 atom per unit cell







# Number of Atoms in SC Unit Cell







### Number of Atoms in SC Unit Cell



number of atom =  $\frac{1}{8}$  x 8 corner atoms = 1 atom



### Coordination Number of SC





## Packing Efficiency of SC



Packing efficiency = <u>52%</u>







# Number of Atoms in **BCC** Unit Cell





### Number of Atoms in BCC Unit Cell



number of atoms =  $\frac{1}{8}$  x 8 corner atoms + 1 interior atom = 2 atoms

1 atom





### Coordination Number of BCC







### Packing Efficiency of BCC



Packing efficiency = <u>68%</u>







# Number of Atoms in FCC Unit Cell







### Number of Atoms in FCC Unit Cell



number of atoms =  $\frac{1}{8}$  x 8 corner atoms

$$+\frac{1}{2} \times 6$$
 face atoms

$$= 4 atoms$$

1/2 atom





### Coordination Number of FCC





### Packing Efficiency of FCC



Packing efficiency = 74%





# Keep in mind !!!

| Crystal | Number of | Coordination | Lattice   |
|---------|-----------|--------------|-----------|
| lattice | atoms     | number       | parameter |
| SC      | 1         | 6            | a = 2R    |
| BCC     | 2         | 8            | a√3 = 4R  |
| FCC     | 4         | 12           | a√2 = 4R  |





#### Holes in Close Packed

holes in close packed

1. TETRAHEDRAL HOLE

1. OCTAHEDRAL HOLE





## Holes in Close Packed





= Octahedral hole = 7

= Tetrahedral hole = 14

tetrahedral hole 2X octahedral hole



= Tetrahedral hole = 14 -



## Tetrahedral hole

 Formed by a planar triangle of atoms, with a 4<sup>th</sup> atom covering the indentation in the center.

 The coordination number of an atom occupying an tetrahedral hole is 4.





# Tetrahedral hole





# Octahedral hole

 Lies within two staggered triangular planes of atoms.

 The coordination number of an atom occupying an octahedral hole is 6.





# Octahedral hole





# Crystal density

Crystal density determined by:

$$\rho = \frac{\Sigma \, n_i \, x \, M}{N_A \, x \, V}$$

#### Which:

```
\rho = crystal density (g.cm<sup>-3</sup>)
```

$$N_A = Avogadro number (6.02x10^{23} atoms.mol-1)$$





# Crystal density

#### Problem 2

-Calculate the density (in gram.cm<sup>-3</sup>)of platinum metal if it has a face centered cubic unit cell and a crystallographic radius of 135 pm (molar mass of platinum = 195.1 gram.mol<sup>-1</sup>)





#### Answer

- -fcc = 4 atoms per unit cell
- Lattice parameter = a
- $-\ln fcc \rightarrow a\sqrt{2} = 4R \rightarrow a = 2R\sqrt{2}$





- V cell = 
$$a^3$$
  
=  $(2R\sqrt{2})^3$   
=  $(2 \times 135.10^{-10}. \sqrt{2})^3 \text{ cm}^3$   
=  $5.567 \times 10^{-23} \text{ cm}^3$ 

$$\rho = \frac{\sum n_i \times M}{N_A \times V}$$

$$\rho = \frac{4 \text{ atoms x } 195.1 \text{ gram.mot}^{1}}{(6.02 \text{ x } 10^{23} \text{ atoms.mot}^{1}) (5.567 \text{ x } 10^{-23} \text{ cm}^{3})}$$

$$\rho = \frac{780.4 \, \text{g}}{33.513 \, \text{cm}^3} = 23.28 \, \text{g.cm}^{-3}$$





-Assume the radius of one iron atom is 1.24 angstroms (1 angstrom = 1 x 10<sup>-8</sup> cm). What would be the density of body centered cubic (BCC) iron in grams/cubic centimeter? Molar mass of iron = 55.85 gram.mol<sup>-1</sup>





- Hint: Find the mass and volume of one unit cell.
- Remember to count only the fraction of each atom in the cell.





#### Answer

- -bcc = 2 atoms per unit cell
- -In bcc:

$$a\sqrt{3} = 4R$$

$$a = 4/3 R \sqrt{3}$$

$$a = 4/3 \cdot 1.24 \times 10^{-8} \text{ cm}.\sqrt{3}$$

$$= 2.86 \times 10^{-8} \text{ cm}$$





# -V cell = $a^3$ = $(2.86 \times 10^{-8} \text{ cm})^3$ = $2.34 \times 10^{-23} \text{ cm}^3$





mass of iron = 
$$\frac{2 \text{ atoms x } 55.85 \text{ gram.mol}^{1}}{6.02 \text{ x } 10^{23} \text{ atom.mol}^{1}}$$
$$= 1.85 \text{ x } 10^{-22} \text{ gram}$$

$$\rho = \frac{\mathsf{mass}}{\mathsf{volume}}$$

$$= \frac{1.85 \times 10^{-22} \text{ gram}}{2.34 \times 10^{-23} \text{ atom.mol}^{1}}$$

$$= 7.91 \, \text{g.cm}^{-3}$$



- Polonium (molar mass = 209 gram.mol<sup>-1</sup>)
  metal crystallizes in a simple cubic
  structure.
  - Calculate the density (in gram.cm<sup>-3</sup>) of the polonium metal if the atom radius is 176 pm.
  - Based on a literature density of 9.196 g cm<sup>-3</sup>, what is the radius of Po(in pm)?





• The radius of the copper atom is 127.8 pm, and its' density is 8.95 g/cm<sup>3</sup>. Which unit cell is consistent with these data: sc, bcc, or fcc? (molar mass of Cu = 63.55 gram.mol<sup>-1</sup>)





Below 1000°C Fe crystallizes in a bodycentred cubic unit cell with an edge length of 0.28664 nm.

Above 1000°C Fe forms a face-centred cubic cell with an edge length of 0.363 nm.

- Determine the density of Fe under these conditions (in gram/cm<sup>3)</sup>.
- Which one is denser, bcc or fcc?
- Compared to the packing efficiency, predict how it could be?



# The end of the discussion Of Close Packing Geometry

