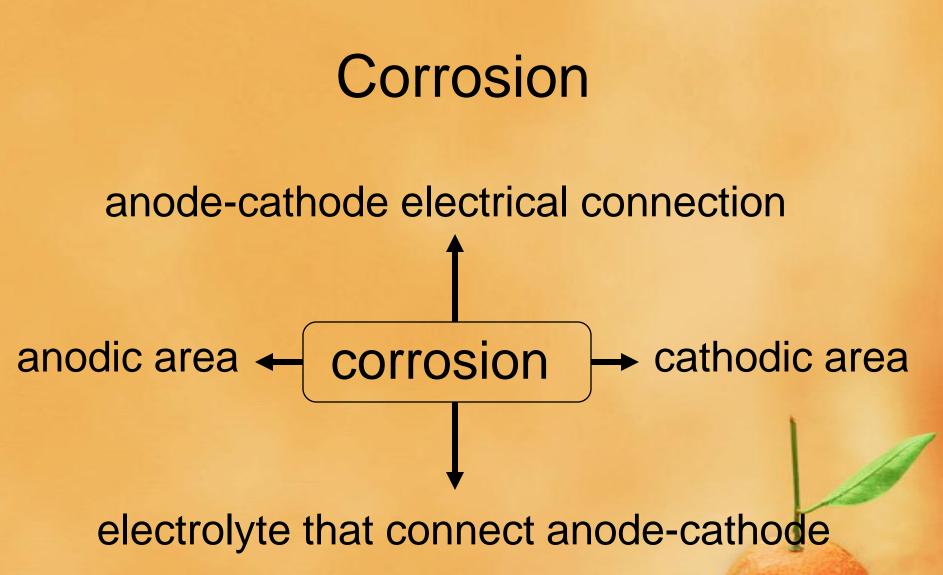


Iron

0†

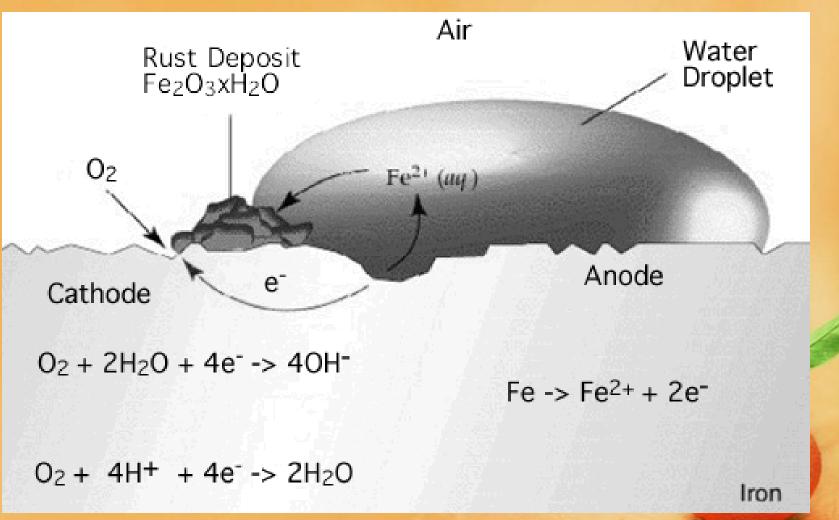

pranjoto utomo

www.getcliparts.com

 deterioration of metal caused by loss of metal to solution by oxidation - reduction reaction

electron transfer

www.getcliparts.com


Corrosion

- Anodic area
 - -Oxidation reaction
 - -Crack in the oxides coating
 - -Boundaries between phases
 - Around impurities
 - $M \rightarrow M^{n+}(aq) + ne^{-}$

Corrosion

- Cathodic area
 - -Reduction
 - -Metal oxides coating
 - -Less reactive impurities
 - -Round other metal compound (sulfides)

The mechanism of the corrosion of iron

Corrosion of iron in gel medium

reduction

oxidation

www.getcliparts.com

- rate of corrosion of anodic >> cathodic
- corrosion is controlled by cathodic process
- preventing

• anodic reaction :

– oxidation of iron & electron are produced

 $-M(s) \rightarrow M^{n+} + n e^{-}$

www.getcliparts.com

- cathodic reaction :
 - -depends on:
 - acidity of the surrounding solution
 - the amount of oxygen presence

• cathodic reaction :

 electron are consumed by any or all of several possible half reaction

> $2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$ $2H_{2}O(\ell) + 2e^{-} \rightarrow 2OH^{-}(aq) + H_{2}(g)$ $O_{2} + 2H_{2}O(\ell) + 4e_{-} \rightarrow 4OH^{-}(aq)$

1. in the absence (little) of free oxygen and H₂O

- e.g. iron nail buried in moist clay
- H₃O⁺ & H₂O are reduced

- 1. in the absence (little) of free oxygen and H_2O
- Reactions
 - anode:
 - $Fe(s) \rightarrow Fe^{2+}(aq) + 2e^{-}$
 - cathode:
 - $2H_2O(\ell) + 2e^- \rightarrow 2OH^-(aq) + H_2(g)$
 - net reaction: Fe(s) + 2H₂O(ℓ) \rightarrow Fe²⁺(aq) + 2OH⁻(aq) + H₂(g)

- 1. in the absence (little) of free oxygen and water
 - $Fe^{2+}(aq) + 2OH^{-}(aq) \rightarrow Fe(OH)_{2}(s)$
- Fe(OH)₂:
 - insoluble precipitate
 - precipitate on metal surface & inhibit further corrosion

- 1. in the absence (little) of free oxygen and water
- further oxidation of $Fe(OH)_2$ $6Fe(OH)_2(s) + O_2(g)$ $\rightarrow 2Fe_3O_4.H_2O(s) + 4H_2O(l)$ green hydrated magnetite

- 1. in the absence (little) of free oxygen and water
- further reaction
 Fe₃O₄.H₂O(s) → Fe₃O₄(s) + H₂O(l)
 black magnetite

 Fe₃O₄(s) is rusted nail in moist soil

2. in the presence of oxygen and H_2O

 rate of corrosion 100 x faster than those without oxygen and water

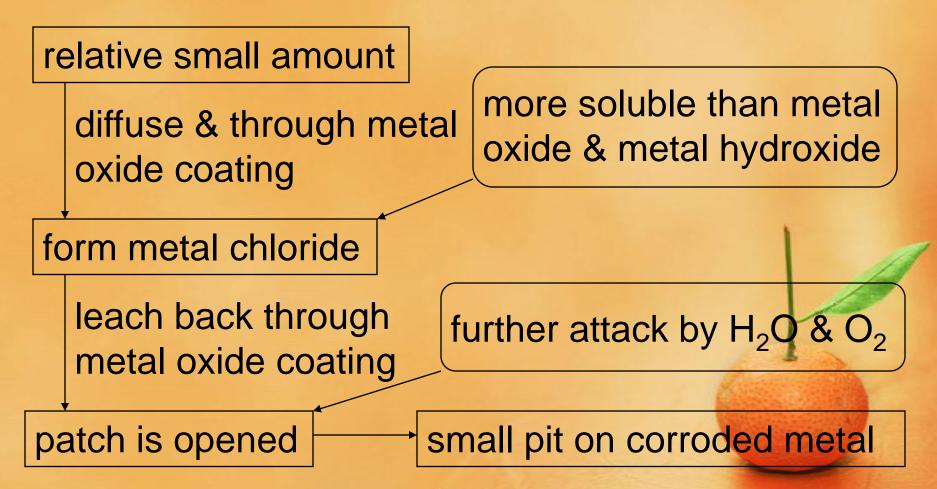
- 2.in the presence of oxygen and H₂O
- Reactions
 - -anode:

 $2Fe(s) \rightarrow 2Fe^{2+}(aq) + 4e^{-1}$

- cathode:

 $O_2(g) + 4H_3O^+(aq) + 4e^- \rightarrow 6H_2O(\ell)$

- net reaction:

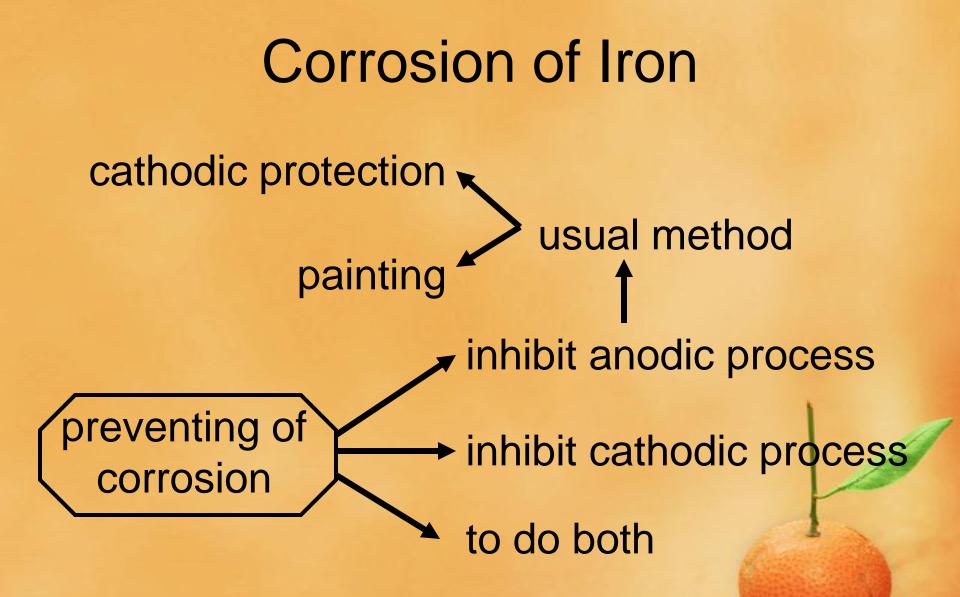

 $2Fe(s) + O_2(g) + 4H_3O^+(aq)$ $\rightarrow 2Fe^{2+}(aq) + 6H_2O(l)$

2.in the presence of oxygen and H₂O

- further oxidation of Fe²⁺ by $O_2 \rightarrow Fe^{3+}$ $2Fe^{2+}(aq) + \frac{1}{2}O_2(g) + (6+x)H_2O(l)$ $\rightarrow 2Fe_2O_3 \cdot xH_2O(s) + 4H_3O^+(aq)$ red brown
- Fe₂O₃·xH₂O: rust on car
- H₃O⁺: allow the corrosion cycle continue

 in the presence of chloride
 e.g. rapid rusting of car in salted water area

3. in the presence of chloride



- 4. in the presence of sulfur dioxide
 - formed in the combustion of oil and coal
 - 1300 times more soluble in water than
 O₂
 - oxidized to form sulfuric acid solution \rightarrow acid rain

- 4. in the presence of sulfur dioxide
- redox reaction

 $\begin{aligned} & \mathsf{Fe}(\mathsf{s}) + \mathsf{SO}_2(\mathsf{g}) + \mathsf{O}_2(\mathsf{g}) \to \mathsf{Fe}\mathsf{SO}_4(\mathsf{s}) \\ & \mathsf{Fe}\mathsf{SO}_4(\mathsf{s}) + \mathsf{O}_2(\mathsf{g}) + \mathsf{6H}_2\mathsf{O}(\ell) \\ & \to 2\mathsf{Fe}_2\mathsf{O}_3.\mathsf{H}_2\mathsf{O}(\mathsf{s}) + 4\mathsf{H}_2\mathsf{SO}_4(\mathsf{aq}) \\ & \mathsf{4H}_2\mathsf{SO}_4(\mathsf{aq}) + 4\mathsf{Fe}(\mathsf{s}) + 2\mathsf{O}_2(\mathsf{g}) \\ & \to 4\mathsf{Fe}\mathsf{SO}_4(\mathsf{s}) + 4\mathsf{H}_2\mathsf{O}(\ell) \end{aligned}$

- 4. in the presence of sulfur dioxide
- $H_2SO_{4:}$
 - Once it produce, difficult to be removed
 - Allow corrosion continue

Painting

- formation of thin film of oxide
- prevent the oxidation half reaction of metal
- iron oxidized by Cr(II) salt to form Cr(VI) and Fe(III) oxides.

 $2 \operatorname{Fe}(s) + 2\operatorname{Na}_{2}\operatorname{CrO}_{4}(aq) + 2\operatorname{H}_{2}\operatorname{O}(\ell)$

 \rightarrow Fe₂O₃(s) + Cr₂O₃(s) + 4NaOH(aq)

 Cr₂O₃ protect iron for further oxidation by O₂ & water

Passivation

to force the metal to become passive

thin oxide layer formed on the surface

prevent further electrochemical reaction

Passivation

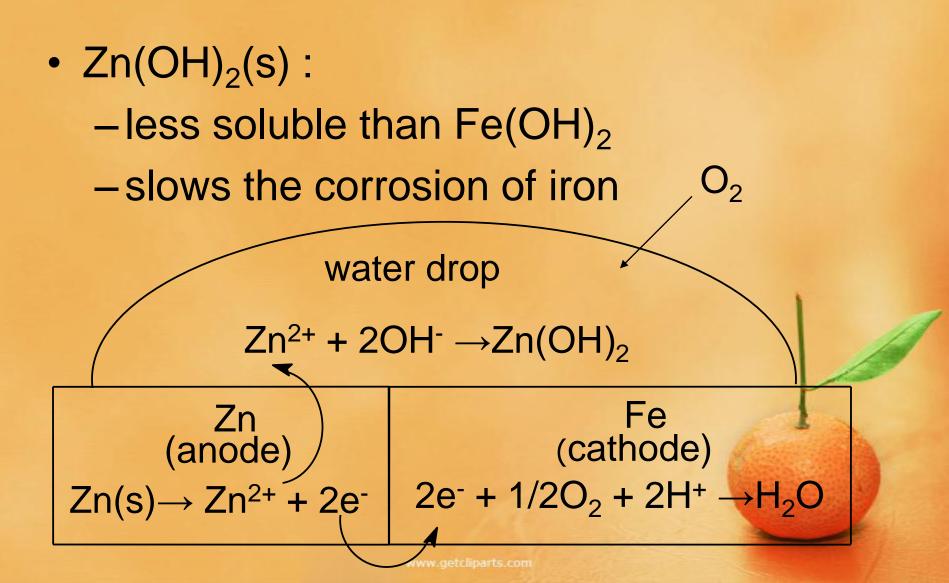
- aluminum
 - -with oxygen form aluminum oxides
- stainless steel
 - -alloy of iron & chromium
- special design of paint
 - -K₂Cr₂O₇ & Pb₃O₄
 - superficial oxidation & passivation of iron

Cathodic protection

- to force the metal to become the cathode in electrochemical cell
- attaching more readily oxidized metal
- e.g. galvanized iron (iron coated by zink)
 → sacrificial anode

zink prevent corrosion of iron

Cathodic protection


- E^ored Zn < Fe or E^oox Zn > Fe
- Zn more readily oxidized than Fe
- Anodic :
 - $-2Zn(s) \rightarrow 2Zn^{2+} + 4e-$
- Cathodic

 $-O_2 + 2H_2O(\ell) + 4e \rightarrow 4OH-(aq)$

Redox

 $-2Zn(s) + O_2 + 2H_2O(\ell) \rightarrow 2Zn(OH)_2(s)$

Cathodic protection

Mg used to prevent corrosion of iron in: -buried pipe -ship hulls -bridges

