TEKNIK DIGITAL

SISTEM BILANGAN

Pengampu:
Fatchul Arifin
fatchul@uny.ac.id

Sumber acuan: Digital Systems: Principles and Applications, 11/e
Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss

Cakupan

- Konversi Bilangan
- Decimal, binary, Octal, hexadecimal.
- Representasi angka Desimal menggunakan Kode BCD
- Kode ASCII
- Deteksi Kesalahan menggunakan Parity method

Konversi Binary ke Decimal

- Convert binary to decimal by summing the positions that contain a 1:

$$
\begin{aligned}
& \begin{array}{lllll}
1 & 1 & 0 & 1 & 1_{2}
\end{array} \\
& 2^{4}+2^{3}+0+2^{1}+2^{0}=16+8+2+1 \\
& =27_{10}
\end{aligned}
$$

- An example with a greater number of bits:

$$
\begin{aligned}
& \begin{array}{llllllll}
1 & 0 & 1 & 1 & 0 & 1 & 0 & 1_{2}=
\end{array} \\
& 2^{7}+0+2^{5}+2^{4}+0+2^{2}+0+2^{0}=181_{10}
\end{aligned}
$$

- The double-dabble method avoids addition of large numbers:
- Write down the left-most 1 in the binary number.
- Double it and add the next bit to the right.
- Write down the result under the next bit.
- Continue with steps 2 and 3 until finished with the binary number.

Konversi Binary ke Decimal

- Binary numbers verify the double-dabble method:

$$
\begin{aligned}
& \text { Given: } \\
& \text { Results: } \\
& 1 \times 2=2 \\
& +1 \\
& 3 \times 2=6 \\
& +0 \\
& 6 \times 2=12 \\
& \frac{+1}{13} \times 2=26 \\
& \begin{array}{l}
+1 \\
\hline 27_{10}
\end{array}
\end{aligned}
$$

Konversi Binary ke Decimal

- Reverse process described in 2-1.
- Note that all positions must be accounted for.

$$
\begin{aligned}
45_{10}=32+8+4+1 & =2^{5}+0+2^{3}+2^{2}+0+2^{0} \\
& =1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1_{2}
\end{aligned}
$$

- Another example:

$$
\begin{aligned}
76_{10}=64+8+4 & =2^{6}+0+0+2^{3}+2^{2}+0+0 \\
& =1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0_{2}
\end{aligned}
$$

Repeated

 DivisionDivide the decimal number by 2 .
Write the remainder after each division until a quotient of zero is obtained.
The first remainder is the LSB.
The last is the MSB.

Konversi Desimal ke Binary

Repeated Division

This flowchart describes the process and can be used to convert from decimal to any other number system.

Konversi Desimal ke Binary

- Convert 37_{10} to binary:

$$
\begin{array}{rlr}
\frac{37}{2}=18.5 \longrightarrow & \text { remainder of } 1(\mathrm{LSB}) \\
\frac{18}{2} & =9.0 \longrightarrow & 0 \\
\frac{9}{2} & =4.5 \longrightarrow & 1 \\
\frac{4}{2} & =2.0 \longrightarrow & 0 \\
\frac{2}{2} & =1.0 \longrightarrow & 0 \\
\frac{1}{2} & =0.5 \longrightarrow & 1(\mathrm{MSB})
\end{array}
$$

Sistem Bilangan Hexadecimal

- Hexadecimal allows convenient handling of long binary strings, using groups of 4 bits—Base 16
- 16 possible symbols: 0-9 and A-F

16^{4}	16^{3}	16^{2}	16^{1}	16^{0}	16^{-1}	16^{-2}	16^{-3}	16^{-4}
Hexadecimal point								

Relationships between hexadecimal, decimal, and binary numbers.	Hexadecimal	Decimal	Binary
	0	0	0000
	1	1	0001
	2	2	0010
	3	3	0011
	4	4	0100
	5	5	0101
	6	6	0110
	7	7	0111
	8	8	1000
	9	9	1001
	A	10	1010
	B	11	1011
	C	12	1100
	D	13	1101
	E	14	1110
	F	15	1111

Konversi Bilangan Hexadecimal ke Desimal

- Convert from hex to decimal by multiplying each hex digit by its positional weight.

$$
\begin{aligned}
356_{16} & =3 \times 16^{2}+5 \times 16^{1}+6 \times 16^{0} \\
& =768+80+6 \\
& =854_{10}
\end{aligned}
$$

- In a $2^{\text {nd }}$ example, the value 10 was substituted for A and 15 substituted for F.

$$
\begin{aligned}
2 \mathrm{AF}_{16} & =2 \times 16^{2}+10 \times 16^{1}+15 \times 16^{0} \\
& =512+160+15 \\
& =687_{10}
\end{aligned}
$$

For practice, verify that $1 \mathrm{BC} 2_{16}$ is equal to $\mathbf{7 1 0 6}_{10}$

Konversi Bilangan Hexadecimal ke Desimal

- Convert from decimal to hex by using the repeated division method used for decimal to binary conversion.
- Divide the decimal number by 16
- The first remainder is the LSB-the last is the MSB.

Konversi Bilangan Desimal ke Hexadecimal

- Convert 423_{10} to hex:

Konversi Bilangan Desimal ke Hexadecimal

- Convert 214_{10} to hex:

```
214
\(\frac{214}{16}=13+\) remainder of 6
    13
    \(\frac{13}{16}=0+\) remainder of 13
\(214_{10}=D 6_{16}\)
```


Konversi Bilangan Hexadecimal ke Binary

- Leading zeros can be added to the left of the MSB to fill out the last group.

For practice, verify that $\mathrm{BAG}_{16}=\mathbf{1 0 1 1 1 0 1 0 0 1 1 0 ~}_{2}$

Konversi Bilangan Binary ke Hexadecimal

- Convert from binary to hex by grouping bits in four starting with the LSB.
- Each group is then converted to the hex equivalent
- The binary number is grouped into groups of four bits \& each is converted to its equivalent hex digit.

$$
\begin{aligned}
1110100110_{2} & =\underbrace{0011}_{3} \underbrace{1010}_{\mathrm{A}} \underbrace{0110}_{6} \\
& =3 \mathrm{~A} 6_{16}
\end{aligned}
$$

For practice, verify that $1010111112=15 F_{16}$

- Convert decimal 378 to a 16-bit binary number by first converting to hexadecimal.

	Hex	Binary
	0	0000
	1	0001
To perform conversions	2	0010
between hex \& binary, it	3	0011
is necessary to know the	5	0100
four-bit binary numbers	6	0110
(O000 - 1111), and their	8	0111
equivalent hex digits.	9	1000
	A	1001
	B	1011
	C	1100
	D	1101
	E	1110
	F	1111

- When counting in hex, each digit position can be incremented (increased by 1) from 0 to F.
- On reaching value F, it is reset to 0 , and the next digit position is incremented.

Example:

```
38,39,3A,3B,3C,3D,3E,3F,40,41,42
```

When there is a 9 in a digit position, it becomes an A when it is incremented.

With three hex digits, we can count from $\mathbf{0 0 0}_{16}$ to FFF_{16} which is 0_{10} to 4095_{10} - a total of $4096=16^{3}$ values.

BCD Code

- Binary Coded Decimal (BCD) is a widely used way to present decimal numbers in binary form.
- Combines features of both decimal and binary systems.
- Each digit is converted to a binary equivalent.
- BCD is not a number system.
- It is a decimal number with each digit encoded to its binary equivalent.
- A BCD number is not the same as a straight binary number.
- The primary advantage of BCD is the relative ease of converting to and from decimal.

BCD Code

- Convert the number 874_{10} to BCD :
- Each decimal digit is represented using 4 bits.
- Each 4-bit group can never be greater than 9 .

- Reverse the process to convert BCD to decimal.

BCD Code

- Convert 0110100000111001 (BCD) to its decimal equivalent.

Divide the BCD number into four-bit groups and convert each to decimal.

BCD Code

- Convert 0110100000111001 (BCD) to its decimal equivalent.

Divide the BCD number into four-bit groups and convert each to decimal.

BCD Code

- Convert BCD 011111000001 to its decimal equivalent.

$\underbrace{0111}_{7} 1100 \underbrace{0001}_{1}$

The forbidden group represents an error in the BCD number.

- Most microcomputers handle and store binary data and information in groups of eight bits.
- 8 bits = 1 byte.
- A byte can represent numerous types of data/information.
- Binary numbers are often broken into groups of four bits.
- Because a group of four bits is half as big as a byte, it was named a nibble.
- A word is a group of bits that represents a certain unit of information.
- Word size can be defined as the number of bits in the binary word a digital system operates on.
- PC word size is eight bytes (64 bits).

Alphanumeric Codes

- Represents characters and functions found on a computer keyboard.
- 26 lowercase \& 26 uppercase letters, 10 digits, 7 punctuation marks, 20 to 40 other characters.
- ASCII - American Standard Code for Information Interchange.
- Seven bit code: $2^{7}=128$ possible code groups
- Examples of use: transfer information between computers; computers \& printers; internal storage.

ASCII - American Standard Code for Information Interchange

Character	HEX	Decimal									
NUL (null)	0	0	Space	20	32	@	40	64	.	60	96
Start Heading	1	1	!	21	33	A	41	65	a	61	97
Start Text	2	2	"	22	34	B	42	66	b	62	98
End Text	3	3	\#	23	35	C	43	67	c	63	99
End Transmit.	4	4	\$	24	36	D	44	68	d	64	100
Enquiry	5	5	\%	25	37	E	45	69	e	65	101
Acknowlege	6	6	\&	26	38	F	46	70	f	66	102
Bell	7	7	,	27	39	G	47	71	g	67	103
Backspace	8	8	$($	28	40	H	48	72	h	68	104
Horiz. Tab	9	9)	29	41	1	49	73	i	69	105
Line Feed	A	10	*	2A	42	J	4A	74	j	6A	106
Vert. Tab	B	11	+	2B	43	K	4B	75	k	6 B	107
Form Feed	C	12	,	2 C	44	L	4 C	76	1	6 C	108
Carriage Return	D	13	-	2D	45	M	4D	77	m	6 D	109
Shift Out	E	14	.	2E	46	N	4E	78	n	6 E	110

See the entire table on page 49 of your textbook.

Parity Method for Error Detection

- Binary data and codes are frequently moved between locations:
- Digitized voice over a microwave link.
- Storage/retrieval of data from magnetic/optical disks.
- Communication between computer systems over telephone lines, using a modem.

Parity Method for Error Detection

- Electrical noise can cause errors during transmission.
- Spurious fluctuations in voltage or current present in all electronic systems.

- Many digital systems employ methods for error detection-and sometimes correction.
- One of the simplest and most widely used schemes for error detection is the parity method.

Parity Method for Error Detection

- The parity method of error detection requires the addition of an extra bit to a code group.
- Called the parity bit, it can be either a 0 or 1 , depending on the number of 1 s in the code group.
- There are two parity methods, even and odd.
- The transmitter and receiver must "agree" on the type of parity checking used.
- Even seems to be used more often.

Parity Method for Error Detection

- Even parity method-the total number of bits in a group including the parity bit must add up to an even number.
- The binary group 1011 would require the addition of a parity bit 1, making the group 11011.
- The parity bit may be added at either end of a group.

Parity Method for Error Detection

- Odd parity method-the total number of bits in a group including the parity bit must add up to an odd number.
- The binary group 1111 would require the addition of a parity bit 1, making the group 11111.

The parity bit becomes a part of the code word.
Adding a parity bit to the seven-bit ASCII code produces an eight-bit code.

Applications

- When ASCII characters are transmitted there must be a way to tell the receiver a new character is coming.
- There is often a need to detect errors in the transmission as well.
- The method of transfer is called asynchronous data communication.

Applications

- An ASCII character must be "framed" so the receiver knows where the data begins and ends.
- The first bit must always be a start bit (logic 0).
- ASCII code is sent LSB first and MSB last.
- After the MSB, a parity bit is appended to check for transmission errors.
- Transmission is ended by sending a stop bit (logic 1).

