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Extension Principle & Fuzzy Relations (3.2)

& Extension principle

A Is a fuzzy set on X :
A= g a (X)) I X+ s, (X)) X+, (X)) 1 X

The image of A under f(.) is a fuzzy set B:
B = ug(X) /Yy, +ug(X) ! y,+-+ug(x,)/y,

wherey, =f(x),I=1ton

If f(.) Is @ many-to-one mapping, then
Hg(y)= max u,(x)

x="f71(y)
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Extension Principle & Fuzzy Relations (3.2) (cont.)

— Example:

Application of the extension principle to fuzzy sets with
discrete universes

LetA=0.1/-2+0.4/-1+0.8/0+0.9/1+0.3/2
and f(x) =x2 -3

Applying the extension principle, we obtain:
B=0.1/1+0.4/-2+0.8/-3+0.9/-2+0.3 /1
=0.8/-3+(0.4v0.9) / -2+(0.1vV0.3) / 1

=0.8/-3+0.9/-2+0.3/1

where “V” represents the “max” operator

Same reasoning for continuous universes
Dr. Djamel Bouchaffra CSE 513 Soft Computing, Ch. 3: Fuzzy rules & fuzzy reasoning
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Extension Principle & Fuzzy Relations (3.2) (cont.)

& Fuzzy relations

— A fuzzy relation R is a 2D MF:

R=1((X,y), go (X, Y)I(X,y) € X xY}

— Examples:

Let X =Y = IR+
and R(x,y) = “y is much greater than x”

The MF of this fuzzy relation can be subjectively defined as:
C y—x

Ug(X,Y)=<4X+y+2

0 JAfy <X

Ay > X

\

If X={3,4,5} &Y ={3,4,5,6,7}

Dr. Djamel Bouchaffra CSE 513 Soft Computing, Ch. 3: Fuzzy rules & fuzzy reasoning



Extension Principle & Fuzzy Relations (3.2) (cont.)

e Then R can be Written as a matrix:

"0 0.111 0.200 0.273 0.333]
R={0 0 0091 0.167 0.231
0 0 0 0077 0143

where R{i,j} = p[xi, yj]
— X is close to y (x and y are numbers)
— X depends ony (x and y are events)
— x and y look alike (x and y are persons or objects)

— If xis large, then y is small (x is an observed reading and Y is
a corresponding action)

Dr. Djamel Bouchaffra CSE 513 Soft Computing, Ch. 3: Fuzzy rules & fuzzy reasoning
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Extension Principle & Fuzzy Relations (3.2) (cont.)
— Max-Min Composition

« The max-min composition of two fuzzy relations R, (defined on X
and Y) and R, (defined on Y and 2) is

luRloRZ(X’ Z) = \;[/URl(Xi y) A /URZ(y’ z)]

* Properties:
— Associativity: Ro(SoT)=(RoS)oT

— Distributivity over union: Ro(SUT)=(RoS)U(R-T)

— Week distributivity over intersection:
Re(SAT)c (RoS)N(R-T)
— Monotonicity: S ¢ T = (RoS)c (RoT)

Dr. Djamel Bouchaffra CSE 513 Soft Computing, Ch. 3: Fuzzy rules & fuzzy reasoning
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Extension Principle & Fuzzy Relations (3.2) (cont.)

« Max-min composition is not mathematically tractable,
therefore other compositions such as max-product
composition have been suggested

— Max-product composition

:URloRZ(X’ Z) = \;[,URl(X’ y)/URz(y’ z)]

Dr. Djamel Bouchaffra CSE 513 Soft Computing, Ch. 3: Fuzzy rules & fuzzy reasoning
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Extension Principle & Fuzzy Relations (3.2) (cont.)

— Example of max-min & max-product composition

e Let R, = “xisrelevant to y”
R, = “y is relevant to z”
be two fuzzy relations defined on X*Y and Y*Z respectively
X={1,2,3}, Y ={o,B,%,0} and Z = {a,b}.

Assume that:;

_ - 09 01
0.1 0.3 05 0.7
0.2 0.3
R,=(04 0.2 08 0.9 R, =
0.5 0.6
0.6 0.8 0.3 0.2
- - 0.7 0.2

Dr. Djamel Bouchaffra CSE 513 Soft Computing, Ch. 3: Fuzzy rules & fuzzy reasoning
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Extension Principle & Fuzzy Relations (3.2) (cont.)

The derived fuzzy relation “x is relevant to z” based on R,
& R,

Let’s assume that we want to compute the degree of
relevance between2 e X & a e Z

Using max-min, we obtain:
MR,oR, (2,8) =max{0.4A 0.9,0.2A0.2,0.8A0.5,0.9A0.7}

= max{0.4,0.2,0.5,0.7}
=0.7

Using max-product composition, we obtain:
MR,-R, (2,8) =max}0.4*0.9,0.2*0.2,0.8%0.5,0.9%0.7}

= max{0.36,0.04,0.40,0.63}
=0.63

Dr. Djamel Bouchaffra CSE 513 Soft Computing, Ch. 3: Fuzzy rules & fuzzy reasoning
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/Q/Fuzzy If-then rules (3.3)

& Linguistic Variables

— Conventional techniques for system analysis are
intrinsically unsuited for dealing with systems based
on human judgment, perception & emotion

— Principle of incompatibility

» As the complexity of a system increases, our ability to make
precise & yet significant statements about its behavior
decreases until a fixed threshold

» Beyond this threshold, precision & significance become
almost mutually exclusive characteristics [Zadeh, 1973]

Dr. Djamel Bouchaffra CSE 513 Soft Computing, Ch. 3: Fuzzy rules & fuzzy reasoning
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Fuzzy if-then rules (3.3) (cont.)

— The concept of linguistic variables introduced by Zadeh is an
alternative approach to modeling human thinking

— Information is expressed in terms of fuzzy sets instead of crisp
numbers

— Definition: A linguistic variable is a quintuple
(x, T(x), X, G, M) where:

X is the name of the variable

T(X) is the set of linguistic values (or terms)

X is the universe of discourse

G is a syntactic rule that generates the linguistic values

M is a semantic rule which provides meanings for the linguistic
values

Dr. Djamel Bouchaffra CSE 513 Soft Computing, Ch. 3: Fuzzy rules & fuzzy reasoning
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uzzy if-then rules (3.3) (cont.)

— Example:

A numerical variable takes numerical values
Age = 65

A linguistic variables takes linguistic values
Age is old

A linguistic value is a fuzzy set

All linguistic values form a term set

T(age) = {young, not young, very young, ...
middle aged, not middle aged, ...
old, not old, very old, more or less old, ...
not very yound and not very old, ...}

Dr. Djamel Bouchaffra CSE 513 Soft Computing, Ch. 3: Fuzzy rules & fuzzy reasoning
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uzzy if-then rules (3.3) (cont.)

 Where each term T(age) is characterized by a fuzzy set of a
universe of discourse X= = [0,100]

T I T T T T L]

g Middle Aged 7
B o8l o’/ .
() i Ver
206} /0Ol -
- X /
it /
o 0.4 ; / -
£2 ;

0 G L L | —
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Fuzzy if-then rules (3.3) (cont.)

— The syntactic rule refers to the way the terms in
T(age) are generated

— The semantic rule defines the membership
function of each linguistic value of the term set

— The term set consists of primary terms as (young,
middle aged, old) modified by the negation (“not”)
and/or the hedges (very, more or less, quite,
extremely,...) and linked by connectives such as
(and, or, either, neither,...)

Dr. Djamel Bouchaffra CSE 513 Soft Computing, Ch. 3: Fuzzy rules & fuzzy reasoning
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uzzy if-then rules (3.3) (cont.)

— Concentration & dilation of linguistic values

* Let A be a linguistic value described by a fuzzy set with
membership function pi,(.)

k k
AN = [[pa()]F /X
X
Is a modified version of the original linguistic value.
— A% = CON(A) is called the concentration operation
— VA = DIL(A) is called the dilation operation

— CON(A) & DIL(A) are useful in expression the hedges such as
“very” & “more or less” in the linguistic term A

— Other definitions for linguistic hedges are also possible
Dr. Djamel Bouchaffra CSE 513 Soft Computing, Ch. 3: Fuzzy rules & fuzzy reasoning
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Fuzzy if-then rules (3.3) (cont.)

— Composite linguistic terms

Dr. Djamel Bouchaffra

Let’s define: NOT(A) = —A = j[l—uA(X)]/X’
X

AandB=ANB = [[ua(X) Apg(X)]/X
X

AorB=AUB = [[ua(X) Vv pg(X)]/ X
X

where A, B are two linguistic values whose
semantics are respectively defined by p,(.) & pg(.)

Composite linguistic terms such as: “not very

young”, “not very old” & “young but not too young”
can be easily characterized

CSE 513 Soft Computing, Ch. 3: Fuzzy rules & fuzzy reasoning
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Fuzzy if-then rules (3.3) (cont.)

— Example: Construction of MFs for composite
linguistic terms

1

X 4
1+
=)

1

6
1+(x—100)
30

Let'sS  Myoung (X) = bell(x,20,2,0) =

Hoig (X) = bell(x,30,3,100) =

Where x is the age of a person in the universe of discourse

[0, 100]

1
« More or less = DIL(old) = Vold = S[( : (X—lOO)G

30

[ X

17
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uzzy if-then rules (3.3) (cont.)

* Not young and not old = —wyoung N —old =

xb.

“(20)4_

X

 Young but not too young = young

{

1

14

X

20

J.

1-—

(
1

1-—

%

18

1 / X

(x—lOO)G
1+
30 ) |

M —young? (too = very) =

\2

X

4
1+()
. \20/ )

/ X

« Extremely old = very very very old = CON (CON(CON(old))) =
- -8

Dr. Djamel Bouchaffra

|

1

1+

(x—lOO
30

]6

[ X
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(a) Primary Linguistic Values
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40 60
X = age
(b) Composite Linguistic Values

Not Young and Not, Old

Extremely Old
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Kuzzyi&hen rules (3.3) (cont.)

— Contrast intensification

the operation of contrast intensification on a
linguistic value A is defined by

2A% if0<p,(X)<05

INT(A) =
(A Lz(ﬂA)2 if05<pu, (x)<1

* INT increases the values of n,(x) which are greater than
0.5 & decreases those which are less or equal that 0.5

« Contrast intensification has effect of reducing the

fuzziness of the linguistic value A

Dr. Djamel Bouchaffra CSE 513 Soft Computing, Ch. 3: Fuzzy rules & fuzzy reasoning
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