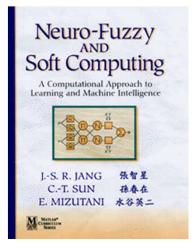
Sistem Cerdas : PTK – Pasca Sarjana - UNY

Fuzzy Rules & Fuzzy Reasoning

Pengampu: Fatchul Arifin

Referensi:



Jyh-Shing Roger Jang et al., *Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence*, First Edition, Prentice Hall, 1997

- Orthogonality

iamel Bouchaffra

A term set $T = t_1, ..., t_n$ of a linguistic variable x on the universe X is orthogonal if:

$$\sum_{i=1}^{n} \mu_{t_i}(\mathbf{x}) = \mathbf{1}, \quad \forall \mathbf{x} \in \mathbf{X}$$

Where the t_i's are convex & normal fuzzy sets defined on X.

General format:

- If x is A then y is B (where A & B are linguistic values defined by fuzzy sets on universes of discourse X & Y).
 - "x is A" is called the antecedent or premise
 - "y is B" is called the consequence or conclusion

– Examples:

amel Bouchaffra

- If pressure is high, then volume is small.
- If the road is slippery, then driving is dangerous.
- If a tomato is red, then it is ripe.
- If the speed is high, then apply the brake a little.

- Meaning of fuzzy if-then-rules (A \Rightarrow B)
 - It is a relation between two variables x & y; therefore it is a binary fuzzy relation R defined on X * Y
 - There are two ways to interpret $A \Rightarrow B$:
 - A coupled with B
 - A entails B

if A is coupled with B then:

$$\mathbf{R} = \mathbf{A} \Rightarrow \mathbf{B} = \mathbf{A} * \mathbf{B} = \int_{\mathbf{X}^* \mathbf{Y}} \mu_{\mathbf{A}}(\mathbf{x})^{\tilde{*}} \mu_{\mathbf{B}}(\mathbf{y}) / (\mathbf{x}, \mathbf{y})$$

where * is a T - normoperator.

If A entails B then:

Diamel Bouchaffra

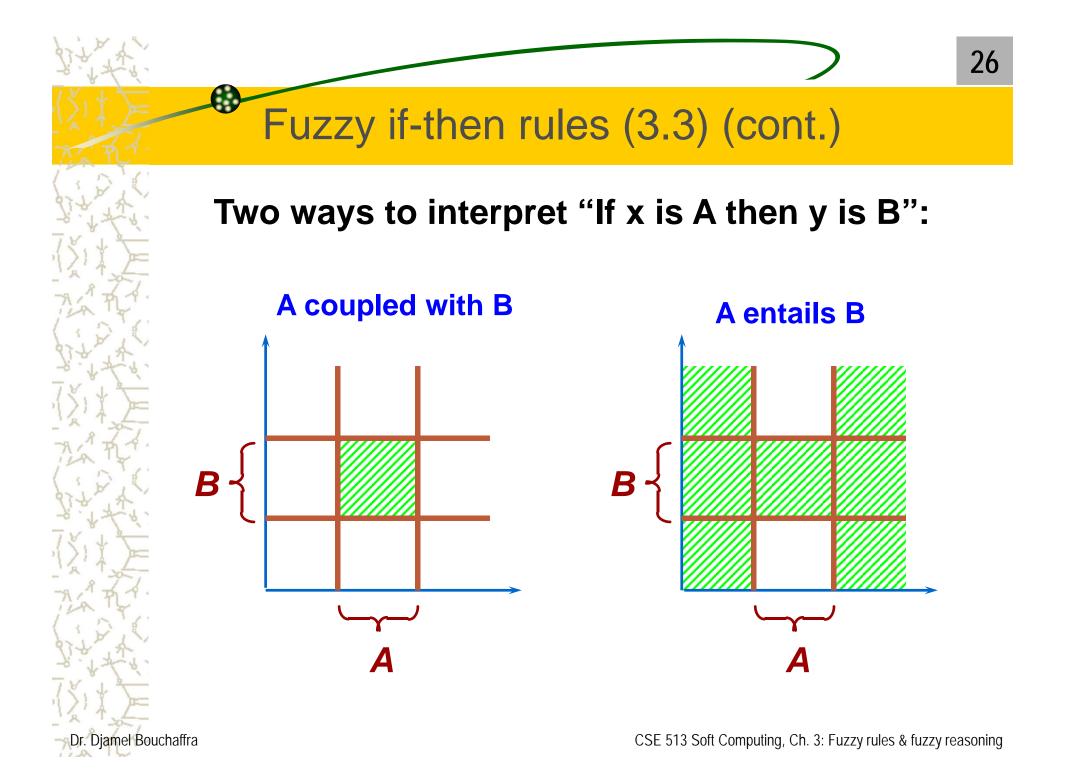
 $R = A \Rightarrow B = \neg A \cup B$ (material implication)

$$R = A \Rightarrow B = \neg A \cup (A \cap B)$$
 (propositional calculus)

 $R = A \Rightarrow B = (\neg A \cap \neg B) \cup B$ (extended propositional calculus)

$$\mu_{\mathbf{R}}(\mathbf{x},\mathbf{y}) = \sup\left\{c; \mu_{\mathbf{A}}(\mathbf{x})^{*} c \leq \mu_{\mathbf{B}}(\mathbf{y}), 0 \leq c \leq 1\right\}$$

CSE 513 Soft Computing, Ch. 3: Fuzzy rules & fuzzy reasoning



Note that R can be viewed as a fuzzy set with a two-dimensional MF

$$\mu_{R}(x, y) = f(\mu_{A}(x), \mu_{B}(y)) = f(a, b)$$

With $a = \mu_A(x)$, $b = \mu_B(y)$ and f called the fuzzy implication function provides the membership value of (x, y)

iamel Bouchaffra

- Case of "A coupled with B"

 $R_m = A * B = \int_{X^{*Y}} \mu_A(x) \wedge \mu_B(y) / (x, y)$

(minimum operator proposed by Mamdani, 1975)

$$\mathbf{R}_{\mathbf{p}} = \mathbf{A} * \mathbf{B} = \int_{X^*Y} \mu_{\mathbf{A}}(\mathbf{x}) \, \mu_{\mathbf{B}}(\mathbf{y}) / (\mathbf{x}, \mathbf{y})$$

(product proposed by Larsen, 1980)

$$R_{bp} = A * B = \int_{X*Y} \mu_A(x) \otimes \mu_B(y) / (x, y)$$
$$= \int_{X*Y} 0 \vee (\mu_A(x) + \mu_B(y) - 1) / (x, y)$$

(bounded product operator)

Dr. Djamel Bouchaffra

- Case of "A coupled with B" (cont.)

$$R_{dp} = A * B = \int_{X*Y} \mu_A(x) \cdot \mu_B(y) / (x, y)$$

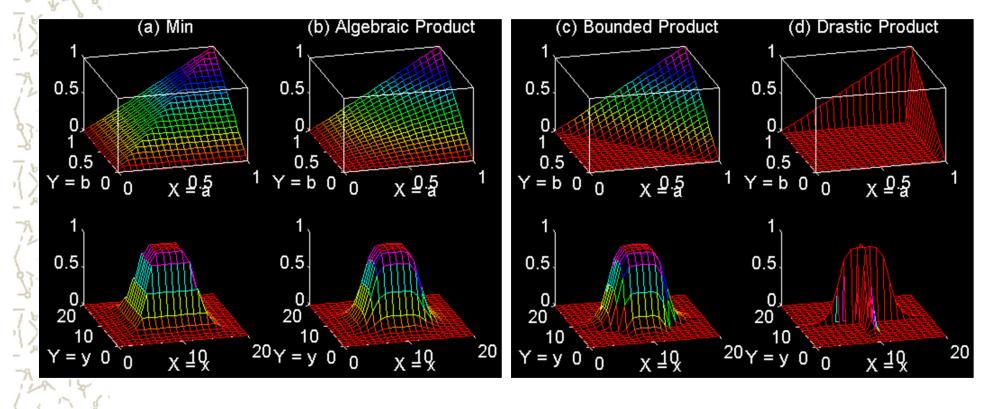
where: f(a, b) = a \cdot b = \begin{bmatrix} a & \text{if } b = 1 \\ b & \text{if } a = 1 \\ 0 & \text{if } otherwise \end{bmatrix}

Example for $\mu_{A}(x) = bell(x;4,3,10)$ and $\mu_{B}(y) = bell(y;4,3,10)$

(Drastic operator)

Dr. Djamel Bouchaffra

Dr. Djamel Bouchaffra



A coupled with B

CSE 513 Soft Computing, Ch. 3: Fuzzy rules & fuzzy reasoning

- Case of "A entails B"

6

$$\mathbf{R}_{\mathbf{a}} = \neg \mathbf{A} \cup \mathbf{B} = \int_{\mathbf{X}^* \mathbf{Y}} \mathbf{1} \wedge (\mathbf{1} - \mu_{\mathbf{A}}(\mathbf{x}) + \mu_{\mathbf{B}}(\mathbf{y}) / (\mathbf{x}, \mathbf{y})$$

where: $f_a(a,b) = 1 \land (1-a+b)$

(Zadeh's arithmetic rule by using bounded sum operator for union)

$$R_{mm} = \neg A \cup (A \cap B) = \int_{X^*Y} (1 - \mu_A(x)) \vee (\mu_A(x) \wedge \mu_B(y)) / (x, y)$$

where: $f_m(a, b) = (1 - a) \vee (a \wedge b)$

(Zadeh's max-min rule)

Dr. Djamel Bouchaffra

- Case of "A entails B" (cont.)

Diamel Bouchaffra

$$\mathbf{R}_{s} = \neg \mathbf{A} \cup \mathbf{B} = \int_{X^{*}Y} (1 - \mu_{\mathbf{A}}(\mathbf{x})) \vee \mu_{\mathbf{B}}(\mathbf{y}) / (\mathbf{x}, \mathbf{y})$$

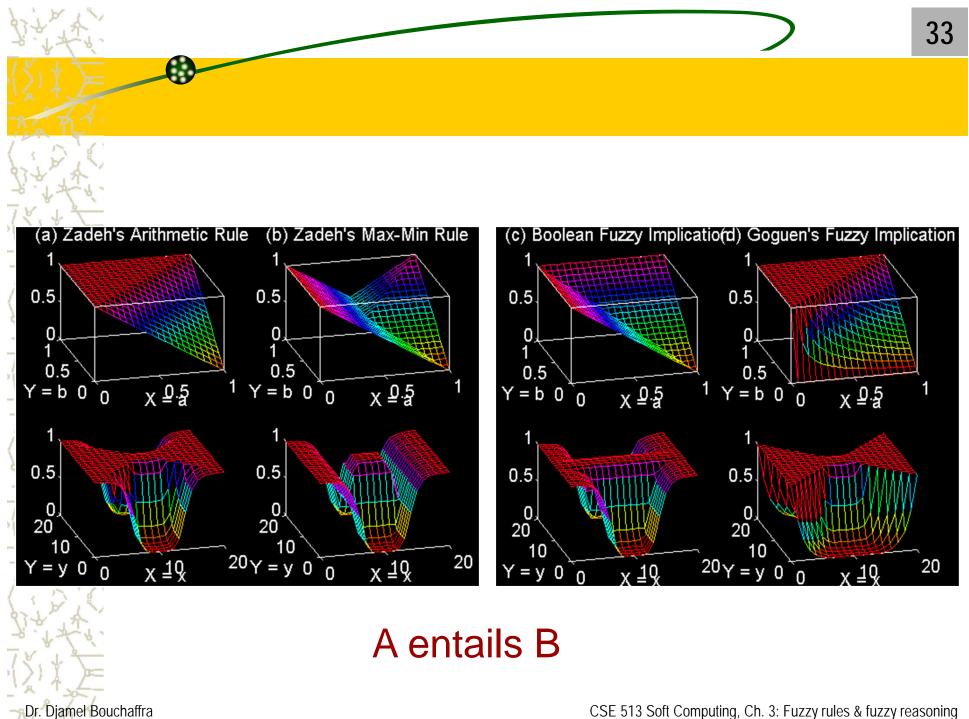
where: $\mathbf{f}_{s}(\mathbf{a}, \mathbf{b}) = (1 - \mathbf{a}) \vee \mathbf{b}$

(Boolean fuzzy implication with max for union)

$$R_{\Delta} = \int_{X^*Y} (\mu_A(x) \tilde{<} \mu_B(y)) / (x, y)$$

where : $a \tilde{<} b = \begin{cases} 1 & \text{if } a \leq b \\ b / a & \text{otherwise} \end{cases}$

(Goguen's fuzzy implication with algebraic product for T-norm)



Fuzzy Reasoning (3.4)

Definition

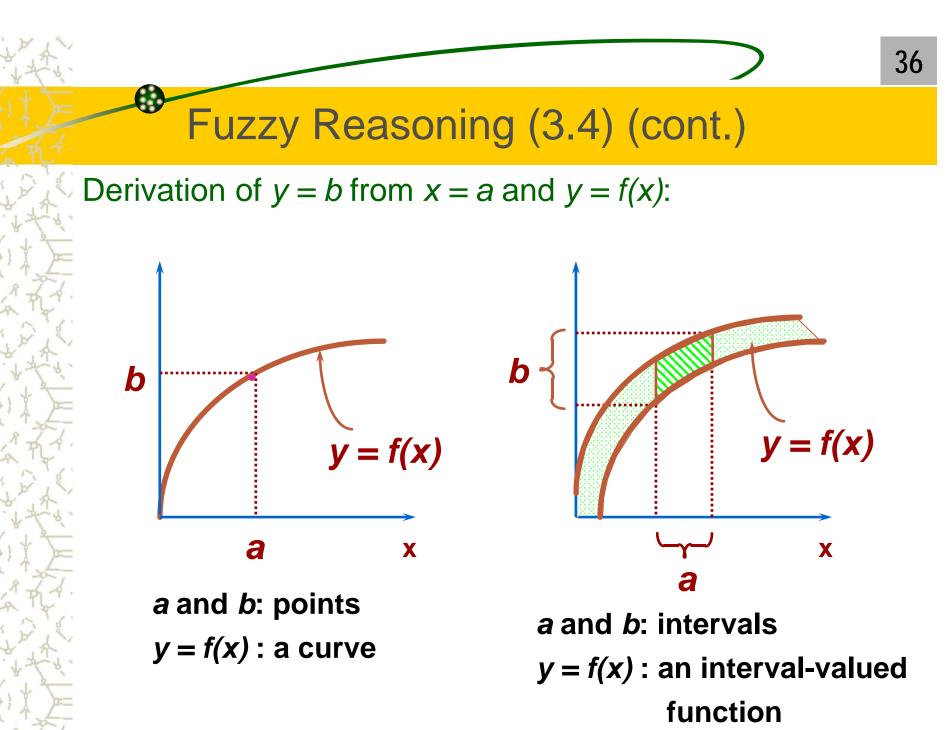
Diamel Bouchaffra

- Known also as approximate reasoning
- It is an inference procedure that derives conclusions from a set of fuzzy if-then-rules & known facts

- Compositional rule of inference
 - Idea of composition (cylindrical extension & projection)
 - Computation of b given a & f is the goal of the composition
 - Image of a point is a point

amel Bouchaffra

- Image of an interval is an interval

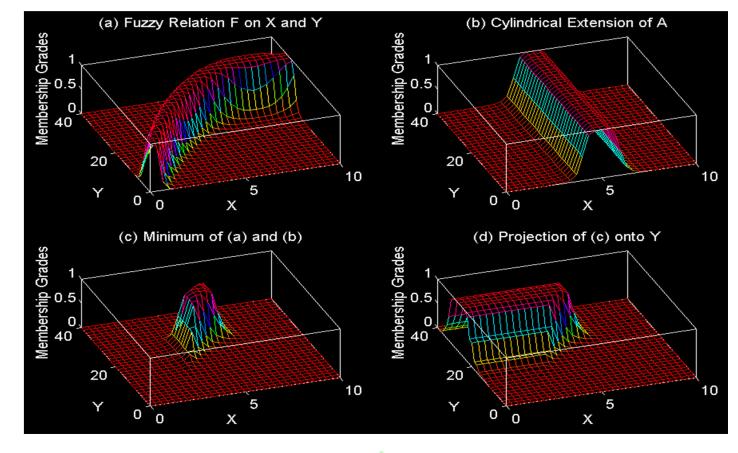


Dr. Djamel Bouchaffra

- The extension principle is a special case of the compositional rule of inference
 - F is a fuzzy relation on X*Y, A is a fuzzy set of X & the goal is to determine the resulting fuzzy set B
 - Construct a cylindrical extension c(A) with base A
 - Determine $c(A) \land F$ (using minimum operator)
 - Project $c(A) \land F$ onto the y-axis which provides B

a is a fuzzy set and y = f(x) is a fuzzy relation:

Dr. Djamel Bouchaffra



cri.n

& Given A, $A \Rightarrow B$, infer B

6

r. Djamel Bouchaffra

- A = "today is sunny" A \Rightarrow B: day = sunny then sky = blue infer: "sky is blue"
 - illustration

Premise 1 (fact):	x is A
Premise 2 (rule):	if x is A then y is B
Consequence:	y is B

Approximation

- A' = " today is more or less sunny"
- B' = " sky is more or less blue"
 - illustration

Diamel Bouchaffra

Premise 1 (fact):x is A'Premise 2 (rule):if x is A then y is B

Consequence: y is B'

(approximate reasoning or fuzzy reasoning!)

Definition of fuzzy reasoning

Let A, A' and B be fuzzy sets of X, X, and Y, respectively. Assume that the fuzzy implication

 $A \Rightarrow B$ is expressed as a fuzzy relation R on X*Y. Then the fuzzy set B induced by "x is A'" and the fuzzy rule "if x is A then y is B' is defined by:

$$\mu_{\mathbf{B}'}(\mathbf{y}) = \max_{\mathbf{x}} \min[\mu_{\mathbf{A}'}(\mathbf{x}), \mu_{\mathbf{R}}(\mathbf{x}, \mathbf{y})]$$

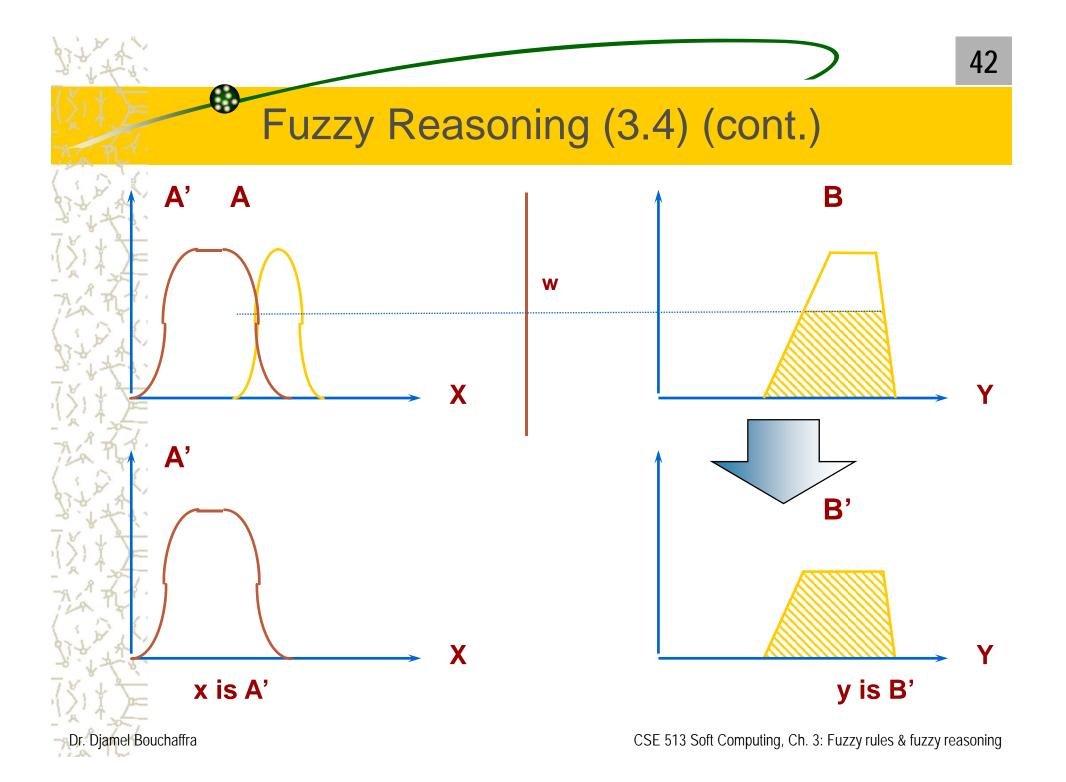
Single rule with single antecedent

Rule : if x is A then y is B

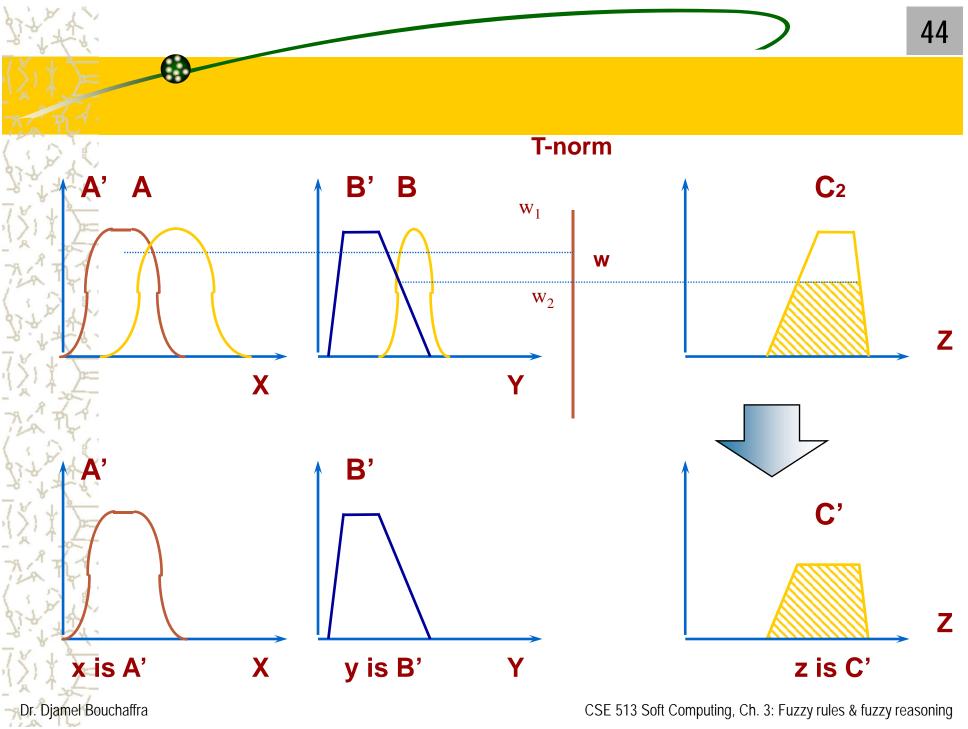
Fact: x is A'

iamel Bouchaffra

Conclusion: y is B' $(\mu_{B'}(y) = [\lor_x (\mu_{A'}(x) \land \mu_A(x)] \land \mu_B(y))$



43 Single rule with multiple antecedents Premise 1 (fact): x is A' and y is B' Premise 2 (rule): if x is A and y is B then z is C Conclusion: z is C' Premise 2: $A^*B \rightarrow C$ $\mathbf{R}_{\text{mamdani}}(\mathbf{A},\mathbf{B},\mathbf{C}) = (\mathbf{A} * \mathbf{B}) * \mathbf{C} = \int \mu_{\mathbf{A}}(\mathbf{x}) \wedge \mu_{\mathbf{B}}(\mathbf{y}) \wedge \mu_{\mathbf{C}}(\mathbf{z}) / (\mathbf{x},\mathbf{y},\mathbf{z})$ X*Y*Z $\mathbf{C'} = (\mathbf{A'}^*\mathbf{B'}) \circ (\mathbf{A}^*\mathbf{B} \to \mathbf{C})$ premise 2 premise 1 $\mu_{C'}(z) = \bigvee \left[\mu_{A'}(x) \land \mu_{B'}(y) \right] \land \left[\mu_{A}(x) \land \mu_{B}(y) \land \mu_{C}(z) \right]$ $= \vee \{ [\mu_{A'}(x) \land \mu_{B'}(y) \land \mu_{A}(x) \land \mu_{B}(y)] \} \land \mu_{C}(z)$ $= \left\{ \bigvee_{\mathbf{x}} \left[\mu_{\mathbf{A}'}(\mathbf{x}) \wedge \mu_{\mathbf{A}}(\mathbf{x}) \right] \right\} \wedge \left\{ \bigvee_{\mathbf{y}} \left[\mu_{\mathbf{B}'}(\mathbf{y}) \wedge \mu_{\mathbf{B}}(\mathbf{y}) \right] \right\} \wedge \mu_{\mathbf{C}}(\mathbf{z})$ **W1 w**2 $= (\mathbf{w}_1 \wedge \mathbf{w}_2) \wedge \mu_{\mathbf{C}}(\mathbf{z})$ CSE 513 Soft Computing, Ch. 3: Fuzzy rules & fuzzy reasoning Diamel Bouchaffra



- Multiple rules with multiple antecedents

Premise 1 (fact): x is A' and y is B' Premise 2 (rule 1): if x is A_1 and y is B_1 then z is C_1 Premise 3 (rule 2): If x is A_2 and y is B_2 then z is C_2

Consequence (conclusion): z is C'

 $\mathsf{R}_1 = \mathsf{A}_1 * \mathsf{B}_1 \xrightarrow{} \mathsf{C}_1$

 $\mathsf{R}_2 = \mathsf{A}_2 * \mathsf{B}_2 \xrightarrow{} \mathsf{C}_2$

Since the max-min composition operator o is distributive over the union operator, it follows:

C' = (A' * B') o (R₁ \cup R₂) = [(A' * B') o R₁] \cup [(A' * B') o R₂] = C'₁ \cup C'₂ Where C'₁ & C'₂ are the inferred fuzzy set for rules 1 & 2 respectively

