
Proceedings of 10th International Conference on Webometrics, Informetrics and Scientometrics & 15th COLLNET Meeting 2014

September 3-5, 2014 Technische Universität Ilmenau, Germany

Edited by
Bernd Markscheffel • Daniel Fischer •
Daniela Büttner • Hildrun Kretschmer

Elsevier Research Intelligence

Proceedings of

10th International Conference on Webometrics, Informetrics and Scientometrics & 15th COLLNET Meeting 2014

September 3-5, 2014 Technische Universität Ilmenau, Germany

Edited by

Bernd Markscheffel,

Daniel Fischer,

Daniela Büttner and

Hildrun Kretschmer

Bernd Markscheffel, Daniel Fischer, Daniela Büttner and Hildrun Kretschmer

Technische Universität Ilmenau Fakultät für Wirtschaftswissenschaften und Medien Institut für Wirtschaftsinformatik P.O. Box 100565 98684 Ilmenau Germany

bernd.markscheffel@tu-ilmenau.de daniel.fischer@tu-ilmenau.de daniela.buettner@tu-ilmenau.de kretschmer.h@onlinehome.de

Ilmenau, 2014

Index

Index	V
Invited Papers	1
Eugene Garfield and Alexander Pudovkin	3
Liming Liang and Zhen Zhong	9
Weiping Yue	17
Hildrun Kretschmer and Theo Kretschmer Three-dimensional Visualization and Animation of Emerging Patterns by the Process of Self-Organization in Collaboration Networks	21
I. K. Ravichandra Rao and K. S. Raghavan	49
Full Papers	69
Amir Reza Asnafi and Maryam Pakdaman Naeini	
André Calero Valdez, Anne Kathrin Schaar, Tobias Vaegs, Thomas Thiele, Markus Kowalski, Susanne Aghassi, Ulrich Jansen, Wolfgang Schulz, Guenther Schuh, Sabina Jeschke and Martina Ziefle Scientific Cooperation Engineering Making Interdisciplinary Knowledge Available within Research Facilities and to External Stakeholders	77
Arshia Kaul, Sujit Bhattacharya, Shilpa and Praveen Sharma	87
Ashkan Ebadi and Andrea Schiffauerova	91

Barbara S. Lancho Barrantes Benefits of scientific collaboration	. 103
Bernd Markscheffel and Johannes Schmidt	. 109
Bharvi Dutt and Khaiser Nikam	. 111
Carey Ming-Li Chen	. 121
Carlos Olmeda-Gómez, María Antonia Ovalle-Perandones, Juan Gorraiz and Christian Gumpenberger	. 129
Chen Yue, Zhang Liwei, Wang Zhiqi, Liu Shengbo, Su Lixin and Hou Yu Influential Bloggers and Active Bloggers on ScienceNet: An Analysis of Popular Blogs	. 139
Chun Wang, ZhengYin Hu, Miaoling Chai and Hui Wang Legal Status Prediction for US Patents on Thermocouples	. 145
Divya Srivastava, Arvind Singh Kushwah and Mona Gupta An Analysis of Collaboration Pattern of Indian S & T Papers (Published during 2005-09)	. 153
Divya Srivastava, Arvind Singh Kushwah and Mona Gupta	. 163
Divya Srivastava, Sandhya Diwakar and Ramesh Kundra	. 173
Farideh Osareh and Ismael Mostafavi	. 179
Fatemeh Helaliyan Motlagh and Mohammad Hassanzadeh	. 191
Fatemeh Nooshinfar, Aref Riahi and Elham Ahmadi	. 201

Gayatri Paul and Swapan Deoghuria	209
Grant Lewison and Richard Sullivan	217
Hailong Wang and Minyu Wang Core technology fields and innovation cooperation network of electric vehicle industry	227
Hamideh Asadi and Mahsan Poorasadollahi	237
Hamzehali Nourmohammadi and Abdalsamad Keramatfar	247
Hamzehali Nourmohammadi, Mahdi Keramatfar and Abdalsamad Keramatfar	257
Handaru Jati	265
Hongfang Shao, Qi Yu and Zhiguang Duan	269
Hou Haiyan, Zhao Nannan, ZhangShanshan, Liang Yongxia and Hu Zhigang	281
Jiang Chunlin, Liu Xue and Zhang Liwei Data Fetching and Group Characteristics Analysis Based on Sina Microblog	293
Jiang Chunlin, Zhang Liwei and Liu Xue Survey of the Editorial Board Members for Journals of Library and Information Science in China	301
K. S. Raghavan and I. K. Ravichandra Rao	309
Leila Nemati-Anaraki and Roya Pournaghi	317
Li Gu, Weichun Yan and Shule An The Relationship between internet attention and market share of operation systems for personal computers	327

Liu Xiaomin, Sun Yuan and He Jing	. 335
Impact of articles in non-English language journals – A bibliometric analysis of regional journals of China, Japan, France and Germany in Web of Science	
Lutz Bornmann, Moritz Stefaner, Felix de Moya Anegón and Rüdiger Mutz	. 345
Ranking and mappping of universities and research-focused institutions worldwide: The third release of www.excellencemapping.net	
M.H. Biglu and M. A-Farhangi	. 353
Infometrics analysis of Scientific-literature in Pediatrics obesity	
Marzieh Yari Zanganeh and Nadjla Hariri	359
Transactions Reports Analysis Islamic Azad University Marvdasht – branch website: A Case Study	. 557
Marzieh Yari Zanganeh and Sedigheh Mohammad	. 367
Use of Six Sigma Concept in University Libraries: A Case Study of Fars province Medical Sciences Library University	
Masaki Nishizawa and Yuan Sun	. 373
How is scientific research reported in newspapers? – Comparison between press releases and two different national newspapers in Japan	
Meera and Surendra Kumar Sahu	. 381
Research Output of University College of Medical Science, University of Delhi: A Bibliometric Study	
Mohammad Hassanzadeh and Babak Akhgar	. 395
Relationship between Development Indicators and Contribution to the Science: Experiences from Iran	
Mursheda Begum and Grant Lewison	. 403
European cancer research publications, 2002-13	
Nabi Hasan and Mukhtiar Singh	. 413
Library and Information Science Research Output: A study based on Web of Science	. 113
R. D. Shelton and T. R. Fade	427
Which Scientometric Indicators Best Explain National Performance of High-Tech Outputs?	.421
Roya Pournaghi and Leila Nemati-Anaraki	. 437
The Mutual Role of Scientometrics and Foresight	
S. L. Sangam, Devika Madalli and Uma Patil	449
Indicators to Measure Genetics Literature: A Comparative Study of Selected Countries	

Sandhya Diwakar and K. K. Singh	459
Analysis of the Financial Assistance to Non-ICMR Biomedical Scientists by Indian Council of Medical Research (ICMR) 2009 - 2013	
Shantanu Ganguly, P K Bhattacharya and Tanvi SharmaGrowth of Literature in Biofuels Research: A Resource Analysis	465
Shilpa, Arshia Kaul and Sujit Bhattacharya Salient Aspects of India's Publication activity	481
Soheila Bagheri and Mohaddeseh Dokhtesmati	485
Tahereh Dehdarirad, Anna Villarroya and Maite Barrios	497
Women in Science and Higher Education: a bibliometric study	
Tariq Ashraf	507
Thuraiyappah Pratheepan and W.A. Weerasooriya	
Umut Al and Zehra Taşkın	539
Relationship between Economic Development and Intellectual Production	
Umut Al, İrem Soydal, Umut Sezen and Orçun Madran The Impact of Turkey in the Library and Information Science Literature	549
Vijayakumar M, Debojyoti Nath and Annapurna SM	559
Wen-Yau Cathy Lin	569
Xianwen Wang, Wenli Mao and Chen Liu	575
Xiaoyu Zhu, Zeyuan Liu, Chaomei Chen and Haiyan Hou Statistical analysis on interlocking directorate in Chinese listed companies	581

Yang Zhongkai, Xu Mengzhen and Hanshuang	587
Measurement and Changing Trends of Originality Index Value – In view of NBER Patent Citation Database	
Yunwei Chen, Yong Deng, Fang Chen, Chenjun Ding, Ying Zheng and Shu Fang	597
Zhao Qu, Xiling Shen and Kun Ding	609
Comparative Analysis on Technologies between Chinese and American Large-sized Oil Companies based on Patentometrics	
Posters	619
List of Accepted Posters	621

 $10^{th}\ International\ Conference\ on\ Webometrics, Informetrics\ and\ Scientometrics\ \&\ 15^{th}\ COLLNET\ Meeting\ 2014$

Invited Papers

 $10^{th}\ International\ Conference\ on\ Webometrics, Informetrics\ and\ Scientometrics\ \&\ 15^{th}\ COLLNET\ Meeting\ 2014$

Weight of Webometrics Criteria using Entropy Method

Handaru Jati

Universitas Negeri Yogyakarta Karangmalang Campus Indonesia handaru@uny.ac.id

Abstract

The aim of this study was to propose some of the basic tools for Decision Making. The purpose of this paper is to show a methodology test for the selection of the weighted method, as aid to decision making in the design stage in the area of webometrics. Selecting the weighted method is one of the problems of Multicriteria Decision Analysis in which decision-makers have had disadvantages in weighting assignment criteria. To resolve this problem arises weighting variables using the entropy method. The model presented in this article is limited to display application in a webometric case. This model can be applied as a way to supplement the technical studies to select the weighted method of a webometrics and it gives the relative importance weights of the various elements, and gives an empirical analysis, explain the role of the entropy weight in webometrics study. Entropy weighted method enables rank all the alternatives in question without decisor bias and calculates the specific weight of criteria.

Introduction

In the world there are thousands of universities, and since 2004 it has been published a Web Ranking whichshows the results in every six months (January and July) and covers about 20,000 Higher Education Institutions worldwide. The composite index (Ranking) is calculated by combining standardized positions instead of values. The visibility is calculated giving an extra inbound links that are not from generic domain importance (.Com, .Org, .Net). Figures for rich files (pdf, doc, ppt, ps, Dox, pptx, eps) are combined and have not been treated individually. The intention with this system of analysis and projection of cybermetric indicators under the parameters set Webometrics is to strengthen and indicate the type of information being generated in each of the institutions and thereby improve certain characteristics that further enrich university of university webometrics ranking has changed the setting of higher education and is likely to continue to influence further development nationally and internationally. This moment is a new era for university, characterized by global competition, in which university ranking systems have assumed an importance factor for surviving. Their emergence has also been a matter of controversy, often controversial and subject to considerable debate, has been met with a lot of scepticism, some enthusiasm and an institutional unease. Academic rankings are here to stay and it is results that count for most of higher education's stakeholders.

Literature Review

Webometrics

Although the subfield of webometrics is considered as one of the most recent quantitative studies within the field of library and information science, there are already several international studies that address this topic. Many authors have directed their focus of study for this new environment, for finding web immense diversified network of information resources, easily accessible and still little explored. In this sense, Cronin and McKim (1996) argue that as the Web is becoming a medium increasingly important to science and academia, it is logical that quantitative studies extend well to this medium. Also Thelwall, Vaughan and Björneborn (2003) consider that being a global network of Web documents, initially developed for academic use and then extended to general users, it is obvious that it is a fertile field of research for

bibliometrics, the scientometrics and informetrics. The Webometrics is a ranking based on measurements of the presence of the universities on the Web. It is prepared by the Laboratory Cybermetrics, a group of research is part of the Superior Council of Scientific Research of Spain, and not for commercial purposes. In contrast to other rankings, Webometrics classifies a large number of universities, more than 20,000 in its latest edition (January 2012). Published twice a year (January and July). The system also allows universities ordered by country and region (Aguillo, Ortega et al. 2008). According to its website, the ranking aims to promote open access to information on the Internet by universities access. Also, as most of the rankings, insist on the superiority of his method: "As other rankings focused only on a few relevant aspects, specially research results, our ranking based on indicators of the presence reflects best the Web overall activity of the institutions, as there are many other tasks performed by teachers and researchers that appear on the Web. However, this method also has its limitations, since it favors large universities or those with large budgets for technology.

Entropy Method

The entropy method was developed as an objective method of allocation weights depending on the decision matrix without affecting the preference of the decision maker (Zeleny 1982), the relative importance of criterion j in a decision situation, wi measure its weight is directly related to the amount of information provided by the intrinsically set of alternatives with respect to that criterion (Barba Romero and Pomerol 1997). How much have greater diversity in the evaluations of the alternatives greater importance should be the criterion. Far this diversity is conceptually based on solid and accepted concept of entropy in an information channel posed by Claude Shannon (Shannon and WEAVER 1949). The procedure is as follows:

The evaluations ij (i = 1, m) (j = 1, n) are taken as normalized as a fraction of the sum i ij Σ to the original assessments of each criterion j.

$$a_{ij} = \frac{k_{ij}}{\sum_{i=1}^{m} \sum_{j=1}^{n} k_{ij}} \quad \text{for m > 1 and i=1, 2, ..., m; and j=1, 2, ..., n.}$$
 (1)

Entropy (Ej) is calculated.

$$E_{j} = \left[\frac{-1}{\ln(m)}\right] \sum_{i=1}^{m} \left[a_{ij} \ln(a_{ij})\right]$$
(2)

where m = number of alternatives in the matrix standardized assessments and ij = Criteria or standardized attributes.

c. Diversity criterion (Dj) is calculated.

$$D_j = 1 - E_j \tag{3}$$

The normalized weight of each criterion (Wj) is calculated.

$$w_j = \frac{D_j}{\sum D_j} \tag{4}$$

Research Method

Weighted indicators that take into account are:

- Size: number of pages recovered from 4 search engines: Google, Yahoo, Live Search and Exalead (20%).
- Visibility: The total number of unique external links received (inlinks) by a site that you can den get consistently from Yahoo Search, Live Search and Exalead (50%).
- Rich files: the following file formats were selected after considering their relevance in academic and publication activities and considering the volume of use: Adobe Acrobat (pdf.), Adobe PostScript (ps.), Microsoft Word (. Doc) and Microsoft Powerpoint (.

- Ppt). These data are extracted through Google, Yahoo Search, Live Search and Exalead (15%).
- Academic: Google Scholar provides the number of papers and citations for each domain academic. The results obtained from the database of Google Scholar papers, reports and other academic papers (15%).

Results

The four number of criteria that should typically be considered in selecting the best university website are Size(C1), Visibility (C2), Rich Files (C3), and scholar (C4). First of all we form the decision matrix, after that we compute hi ,di and wi base on Shannon method that are shown in Table 1.

Scholar Rich Files Universitas Size Visibility Total .pdf .ppt .doc .ps Uni A 9950 177,321 259000 84200 9110 22900 375210 9950 Uni B 8970 307,113 390000 26400 10800 13400 440600 8970 Uni C 33200 4.616,437 317000 22300 18100 19900 377300 33200 Uni D 30100 362,854 268000 10100 8650 22800 309550 30100 113,286 269000 12900 20000 20500 322400 Uni E 26700 26700

Table 1. Data

We want to obtain a weight for each criterion by using the proposed approach. According to Eq.1, normalized matrix data are presented.

Size	Visibility	Rich Files	Scholar
0,040	0,014	0,501	0,040
0,000	0,043	1,000	0,000
1,000	1,000	0,517	1,000
0,872	0,055	0,000	0,872
0,732	0,000	0,098	0,732

Table 2. Normalized Data

The evaluations of these five alternatives according to the previously stated criteria, i.e., evaluation matrix, are displayed in Table 3.

Table 3. Normalized Data

Size	Visibility	Rich Files	Scholar
0,960	0,986	0,499	0,960
1,000	0,957	0,000	1,000
0,000	0,000	0,483	0,000
0,128	0,945	1,000	0,128
0,268	1,000	0,902	0,268

In our analysis we calculate diversity criteria and the result shows in the table 4.

Table 4. Diversity Criterion

	Size	Visibility	Rich File	Scholar
	-0,665112338	-0,683290598	-0,345859551	-0,665112338
	-0,693147181	-0,663312374	0	-0,693147181
	0	0	-0,334805162	0
	-0,088681645	-0,654732445	-0,693147181	-0,088681645
	-0,185945385	-0,693147181	-0,625181204	-0,185945385
E(C) = ln(2) *total sum	0,471151465	0,777463336	0,576787486	0,471151465
d = 1-E(C)	0,528849	0,222537	0,423213	0,528849

The final rank of each criterion by using the entropy weighted method can be seen in table 5. The obtained values of criterion Size, visibility, rich files, and scholar are 0,310458; 0,130639; 0,248445; and 0,310458 respectively.

We see that the rank of size and scholar are just better than the rank of rich file and visibility. Therefore, size locates at rank 1. Other criteria can be ranked in the same way. For problems with more complexity, with a small program (for example Excel) we can determine the rank of each criterion. In the last Table 5, the rank of each criterion can be seen.

Table 5. Weight of Criterion

Criteria	Weight (W) = d/total
Size	0,310458
Visibility	0,130639
Rich File	0,248445
Scholar	0,310458

Conclusion

There are several methods for obtaining the weights of criteria of an MADM problem, one of which is the entropy method. How to ascertain weights and subjectivity of evaluation model are the main aspects which influence evaluation result in the present quantitative evaluation methods. During ascertaining weights, either subjectivity can't be avoided, or calculation is too complex. On the other hand, subjectivity can't be avoided in some evaluation methods. based on entropy weight can avoid not only subjectivity or complex calculation in ascertaining weights but also subjectivity of evaluation model via the evaluation criteria of weighted relative adjacent degree. Entropy weighted method is a new advancement in quantitative evaluation methods for webometrics.

References

Aguillo, I. F., J. L. Ortega, et al. (2008). "Webometric ranking of world universities: Introduction, methodology, and future developments." *Higher Education in Europe* 33: 233-244.

Barba Romero, S. and J. Pomerol (1997). Decisiones Multicriterio Fundamentos Teóricos y Utilización Práctica. *Universidad de Alcalá de Henares*.

Shannon, C. E. and W. WEAVER (1949). *The Mathematical Theory of Communication*. Chicago, University of Illinois Press.

Zeleny, M. (1982). Multiple Criteria Decision Making. New York, Mc Graw Hill.