ANGED S		FACULTY O	F ENGINEERING		
S C LO	YOGYAKARTA STATE UNIVERSITY				
	TEACHING-LEARNIN	IG ACTION PLAN C	F REINFORCED COM	ICRETE STRUCTURES I	\geq
TIND. ILL. ST.	No. RPP/SPR/230	Revision: 00	July 2, 2009	page 1 of 1	$\left(\right)$
	Fifth semester	TABLE O	F CONTENT	16 x 100 minutes	\mathbb{N}

SECTION N RPP 01	WEEK	TOPICS	
RPP 01			RAG
		BASIC THEORY OF REINFORCED CONCRETE (RC)	3
		STRUCTURES	
RPP 02		DESIGN LOADS FOR RC STRUCTURES	
RPP 03		FLEXURAL DESIGN OF SLABS STRUCTURES	2
		ANALYSIS OF THE FLEXURAL CAPACITY OF RC BEAMS	
RPP 05		DESIGN OF THE FLEXURAL/ LONGITUDINAL	> 2 2
DDD 00		REINFORCEMENT OF RC BEAMS	
RPP 06		DESIGN OF THE STIRRUP/ SHEAR REINFORCEMENT C	OF RC 2
		BEAMS TOTAL	13

Prepared by:	Please, do not copy parts or all of the contents without any	Checked by:
Slamet Widodo, S.T., M.T.	written permission from the Faculty of Engineering,	
	Yogyakarta State University	

TEACHING-LEARNING ACTION PLAN OF REINFORCED CONCRETE STRUCTUR				
No. RPP/SPR/230	Revision: 00	July 2, 2009	page 1 of 3	7
Fifth semester	BASIC CONC	EPT OF RC DESIGN	2x100 minutes	/

COURSE	: REINFORCED CONCRETE STRUCTURES I
COURSE CODE	: SPR 230 (2 CREDITS, THEORY)
STUDY PROGRAM	: CIVIL ENGINEERING AND PLANNING EDUCATION
SEMESTER	: V (Fifth)
WEEK	: 1-2
TIME ALOCATION	: 2 x 100 minutes

STANDARD OF COMPETENCY

Investigating (analyzing) capacity of reinforced concrete structural components and selecting (designing) reinforced concrete members to support a specified load, mainly on flexural reinforcement of plate/ slab and beam, and shear stirrup reinforcement of RC beam.

BASIC COMPETENCE

1. Explain the working principles of reinforced concrete structures based on the characteristics of its materials.

INDICATORS OF ACHIEVED COMPETENCE

- 1. Explain basic physical and mechanical properties of concrete materials.
- 2. Explain basic mechanical properties and classify steel Reinforcement bar.
- 3. Classify common reinforced concrete structures systems/types.
- 4. Explain basic principle of RC design based on strength and Seviceabilility concept.

I. COURSE OBJECTIVES

- 1. To be able explaining physical and mechanical properties of concrete materials.
- 2. To be able explaining mechanical properties and classify steel Reinforcement bar.
- 3. To be able classifying reinforced concrete structures systems/types.
- 4. To be able explaining principle of RC design based on strength and Seviceabilility concept.

II. COURSE MATERIALS

- 1. Concrete
- 2. Steel Reinforcement bar
- 3. Reinforced concrete structures systems/types
- 4. Strength and Seviceabilility concept

III. TEACHING-LEARNING METHOD

1. Presentation

Prepared by: Slamet Widodo, S.T., M.T.		Checked by:
	Yogyakarta State University	

No. RPP/SPR/230 Revision: 00 July 2, 2009 par	
No. RPP/SPR/230 Revision: 00 July 2, 2009 pa	2 of 3
Fifth semester BASIC CONCEPT OF RC DESIGN 2x10	minute🔊

2. Discussion

IV. TEACHING-LEARNING STEPS

A. Opening:

- 1. Explaining course objectives.
- 2. Sampling oral pre-test.
- 3. Motivating.

B. Main Activities:

- 1. Explaining physical and mechanical properties of concrete materials.
- 2. Explaining mechanical properties and classify steel Reinforcement bar.
- 3. Explaining Classification of reinforced concrete structures systems/ types.
- 4. Explaining principle of RC design based on strength and Seviceabilility concept.

C. Closing:

- 1. Sampling oral post-test.
- 2. Summarizing.

V. Teaching Aids

- 1. *Whiteboard* and *boardmarker*.
- 2. Laptop (computer) and LCD Projector

VI. RECOMMENDED TEXTBOOKS:

- 1. ACI Committee 318, (2008), Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary, American Concrete Institute.
- 2. Badan Standarisasi Nasional, (2013), SNI 2847: 2013: Persyaratan Beton Struktural untuk Bangunan Gedung, Badan Standardisasi Nasional.
- 3. Park, R. and Paulay, T., (1975), *Reinforced Concrete Structures*, New York: John Wiley & Sons. Inc.
- 4. Nawy, E.G., (1996), *Beinforced Concrete: A Fundamental Approach 3rd edition*, New York: Prentice Hall.Nawy, E.G., (1996), *Reinforced Concrete: A Fundamental Approach 3rd edition*, New York: Prentice Hall.

- 1. Techniques: Written and oral test.
- 2. Score range: 0-100

TEACHING-LEARNING ACTION PLAN OF REINFORCED CONCRETE STRUCTURES I				
No. RPP/SPR/230	Revision: 00	July 2, 2009	Page 1 of 2	
Fifth semester	DESIGN LOADS OF RC STRUCTURES		2x100 minutes	

COURSE	: REINFORCED CONCRETE STRUCTURES I
COURSE CODE	: SPR 230 (2 CREDITS, THEORY)
STUDY PROGRAM	: CIVIL ENGINEERING AND PLANNING EDUCATION
SEMESTER	: V (Fifth)
WEEK	: 3-4
TIME ALOCATION	: 2 x 100 minutes

STANDARD OF COMPETENCY

Investigating (analyzing) capacity of reinforced concrete structural components and selecting (designing) reinforced concrete members to support a specified load, mainly on flexural reinforcement of plate/ slab and beam, and shear/ stirrup reinforcement of RC beam.

BASIC COMPETENCE

1. Calculate the load combination which should be applied on reinforced concrete building structures.

INDICATORS OF ACHIEVED COMPETENCE

- 1. Classify design load types
- 2. calculate design loads value
- 3. calculate load combinations
- 4. Analyze structural internal forces using acceptable practical approaches

I. COURSE OBJECTIVES

- 1. To be able classifying design load types
- 2. To be able calculating design loads value
- 3. To be able calculating load combinations
- 4. To be able analyzing structural internal forces using acceptable practical approaches

Checked by:

II. COURSE MATERIALS

- 1. Types and design loads value
- 2. Load Combinations
- 3. Acceptable practical approaches for indeterminate structural analysis

III. TEACHING-LEARNING METHOD

- 1. Presentation
- 2. Discussion

IV. TEACHING-LEARNING STEPS

D. Opening:

Prepared by: Slamet Widodo, S.T., M.T.	Please, do not copy parts or all of the contents without any
Slamet Widodo, S.T., M.T.	written permission from the Faculty of Engineering,
	Yogyakarta State University

TEACHING-LEARNING ACTION PLAN OF REINFORCED CONCRETE STRUCTURES I				
No. RPP/SPR/230	Revision: 00	July 2, 2009	Page 2 of 2	((
Fifth semester	DESIGN LOADS OF RC STRUCTURES		2x100 minutes	1

- 1. Explaining course objectives.
- 2. Sampling oral pre-test.
- 3. Motivating.

E. Main Activities:

- 1. Explaining load classification
- 2. Explaining design loads calculation
- 3. Explaining load combinations calculation
- 4. Explaining structural analysis using acceptable practical approaches

F. Closing:

- 1. Sampling oral post-test.
- 2. Summarizing.

V. Teaching Aids

- 1. Whiteboard and boardmarker.
- 2. Laptop (computer) and LCD Projector.

VI. RECOMMENDED TEXTBOOKS:

- 1. ACI Committee 318, (2008), Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary, American Concrete Institute.
- 2. Badan Standarisasi Nasional, (2013), SNI 1727: 2013: Beban Minimum untuk Perancangan Bangunan Gedung dan Struktur Lain, Badan Standardisasi Nasional.
- 3. Badan Standarisasi Nasional, (2013), SNI 2847: 2013: Persyaratan Beton Struktural untuk Bangunan Gedung, Badan Standardisasi Nasional.
- 4. Nawy, E.G., (1996), *Reinforced Concrete: A Fundamental Approach 3rd edition*, New York: Prentice Hall.Nawy, E.G., (1996), *Reinforced Concrete: A Fundamental Approach 3rd edition*, New York: Prentice Hall.

VII. GRADING

1. Techniques: Written and oral test.

C

2. Score range: 0-100

1			
	Prepared by:	Please, do not copy parts or all of the contents without any	Checked by:
\leq	Slamet Widodo, S.T., M.T.	written permission from the Faculty of Engineering,	
		Yogyakarta State University	

TEACHING-LEARNING ACTION PLAN OF REINFORCED CONCRETE STRUCTURES I				
No. RPP/SPR/230	Revision: 00	July 2, 2009	Page 1 of 2	$\left \right $
Fifth semester	FLEXURAL DESIGN OF RC SLABS		3 x 100 menit 🚫	$ \langle$
	STRUCTURES			

COURSE	: REINFORCED CONCRETE STRUCTURES I
COURSE CODE	: SPR 230 (2 CREDITS, THEORY)
STUDY PROGRAM	: CIVIL ENGINEERING AND PLANNING EDUCATION
SEMESTER	: V (Fifth)
WEEK	: 5-7
TIME ALOCATION	: 3 x 100 minutes

STANDARD OF COMPETENCY

Investigating (analyzing) capacity of reinforced concrete structural components and selecting (designing) reinforced concrete members to support a specified load, mainly on flexural reinforcement of plate/ slab and beam, and shear/ stirrup reinforcement of RC beam.

BASIC COMPETENCE

1. Design flexural/ longitudinal steel reinforcement of slab structures.

INDICATORS OF ACHIEVED COMPETENCE

- 1. Design one-way slabs reinforcement
- 2. Design two-way slabs reinforcement
- 3. Draw detailed reinforcement of slab (structures

I. COURSE OBJECTIVES

- 1. To be able designing one way stabs reinforcement
- 2. To be able designing two way slabs reinforcement
- 3. To be able drawing detailed reinforcement of slab structures

II. COURSE MATERIALS

- 1. One-way slabs
- 2. two-way slabs
- 3. Detailed engineering drawing.

III. TEACHING-LEARNING METHOD

- 1. Presentation
- 2. Discussion
- () //)7

IV. TEACHING-LEARNING STEPS

A. Opening:

- Explaining course objectives.
- 2. Sampling oral pre-test.

\square	Prepared by:	Please, do not copy parts or all of the contents without any	Checked by:
Ľ	Slamet Widodo, S.T., M.T.	written permission from the Faculty of Engineering,	
		Yogyakarta State University	

	TEACHING-LEARNING ACTION PLAN OF REINFORCED CONCRETE STRUCTURES I				
	No. RPP/SPR/230	Revision: 00	July 2, 2009	Page 2 of 2	(
	Fifth semester	FLEXURAL DE	SIGN OF RC SLABS	3 x 100 menit 🚫	$ \langle\rangle $
		STR	UCTURES		\sim
					\searrow
+:	ivating			$C \circ$	0
u	ivating.				

3. Motivating.

B. Main Activities:

- 1. Explaining design procedures of one-way slabs reinforcement
- 2. Explaining design procedures of two-way slabs reinforcement
- 3. Explaining standards/ codes of detailed engineering drawing of slab reinforcement.

C. Closing:

- 1. Sampling oral post-test.
- 2. Summarizing.

V. Teaching Aids

- 1. Whiteboard and boardmarker.
- 2. Laptop (computer) and LCD Projector.

VI. RECOMMENDED TEXTBOOKS:

- 1. ACI Committee 318, (2008), Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary, American Concrete Institute.
- 2. Badan Standarisasi Nasional, (2013), SNL 2847: 2013: Persyaratan Beton Struktural untuk Bangunan Gedung, Badan Standardisasi Nasional.
- 3. Gideon Hadi Kusuma dan Vis, W.C., (1994), Dasar-dasar Perencanaan Beton Bertulang Berdasarkan SK SNI 715-1991-03, Jakarta: Penerbit Erlangga.
- 4. Nawy, E.G., (1996), Reinforced Concrete: A Fundamental Approach 3rd edition, New York: Prentice Hall.Nawy, E.G., (1996), Reinforced Concrete: A Fundamental Approach 3rd edition, New York: Prentice Hall.

- 1. Techniques: Written and oral test.
- 2. Score range: 0-100

\bigcap	$\overline{\mathcal{T}}$		
((//	Prepared by:	Please, do not copy parts or all of the contents without any	Checked by:
	Slamet Widodo, S.T., M.T.	written permission from the Faculty of Engineering,	
		Yogyakarta State University	

FACULTY OF ENGINEERING YOGYAKARTA STATE UNIVERSITY TEACHING, I EARNING ACTION BLAN OF REINFORCED CONCRETE STRUCTURES I

TEACHING-LEARNING ACTION PLAN OF REINFORCED CONCRETE STRUCTURES I				
No. RPP/SPR/230	Revision: 00	July 02, 2009	Page 1 of 2	
Fifth semester	FLEXURAL ANALYSIS OF RC BEAM		3 x 100 menit🔾	
	STRUCTURES			

COURSE	: REINFORCED CONCRETE STRUCTURES I		
COURSE CODE	: SPR 230 (2 CREDITS, THEORY)		
STUDY PROGRAM	: CIVIL ENGINEERING AND PLANNING EDUCATION		
SEMESTER	: V (Fifth)		
WEEK	: 9-11		
TIME ALOCATION	: 3 x 100 minutes		

STANDARD OF COMPETENCY

Investigating (analyzing) capacity of reinforced concrete structural components and selecting (designing) reinforced concrete members to support a specified load, mainly on flexural reinforcement of plate/ slab and beam, and shear, stirrup reinforcement of RC beam.

BASIC COMPETENCE

1. Analyze the flexural capacity of RC beam.

INDICATORS OF ACHIEVED COMPETENCE

- 1. Analyze Singly reinforced RC beams
- 2. Analyze Doubly reinforced RC beams
- 3. Analyze T and Inverted-L RC beams.

I. COURSE OBJECTIVES

- 1. To be able analyzing Singly reinforced RC beams
- 2. To be able analyzing Doubly reinforced RC beams
- 3. To be able analyzing T and hyperted-L RC beams.

II. COURSE MATERIALS 4

- 1. Singly reinforced RC beams
- 2. Doubly reinforced RC beams
- 3. T and Inverted-L RC beams. \cap

III. TEACHING-LEARNING METHOD

- 1. Presentation
- 2. Discussion

IV. TEACHING-LEARNING STEPS

A. Opening:

- Explaining course objectives.
- 2. Sampling oral pre-test.
- 3. Motivating.

Prepared by:	Plea	se, do not copy parts or all of the contents without any	Checked by:
slamet Widodo,	S.T., M.T.	written permission from the Faculty of Engineering,	
		Yogyakarta State University	

TEACHING-LEARNING ACTION PLAN OF REINFORCED CONCRETE STRUCTUREST				
No. RPP/SPR/230	Revision: 00	July 02, 2009	Page 2 of 2	
Fifth semester	FLEXURAL ANALYSIS OF RC BEAM		3 x 100 menit	
	STRUCTURES			

0

B. Main Activities:

- 1. Explaining analysis of Singly reinforced RC beams
- 2. Explaining analysis of Doubly reinforced RC beams
- 3. Explaining analysis of T and Inverted-L RC beams.

C. Closing:

- 1. Sampling oral post-test.
- 2. Summarizing.

V. Teaching Aids

- 1. Whiteboard and boardmarker.
- 2. Laptop (computer) and LCD Projector.

VI. RECOMMENDED TEXTBOOKS:

- 1. ACI Committee 318, (2008), Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary, American Concrete Institute.
- 2. Badan Standarisasi Nasional, (2013), SNI 2847: 2013: Persyaratan Beton Struktural untuk Bangunan Gedung, Badan Standardisasi Nasional.
- 3. Istimawan Dipohusodo, (1999), Struktur Beton Bertulang, Jakarta: Gramedia Pustaka Utama.
- 4. Park, R. and Paulay, T., (1975), Reinforced Concrete Structures, New York: John Wiley & Sons. Inc.
- 5. Nawy, E.G., (1996), Reinforced Concrete: A Fundamental Approach 3rd edition, New York: Prentice Hall

- 1. Techniques: Written and oral test.
- 2. Score range: 0-100

Prepared by:	Please, do not copy parts or all of the contents without any	Checked by:
Slamet Widodo, S.T., M.T.	written permission from the Faculty of Engineering,	
	Yogyakarta State University	

ISGER.		FACULTY OF I	ENGINEERING		
A Dec		YOGYAKARTA ST	ATE UNIVERSITY		~
	TEACHING-LEARNIN	IG ACTION PLAN OF	REINFORCED CONCR	ETE STRUCTURES I	\geq
1. 101. VI.	No. RPP/SPR/230	Revision: 00	July 2, 2009	Page 1 of 2	\bigcirc
	Fifth semester	FLEXURAL DES	SIGN OF RC BEAM	2 x 100 menit	\bigcirc
		STRU	ICTURES		

COURSE	: REINFORCED CONCRETE STRUCTURES I
COURSE CODE	: SPR 230 (2 CREDITS, THEORY)
STUDY PROGRAM	: CIVIL ENGINEERING AND PLANNING EDUCATION
SEMESTER	: V (Fifth)
WEEK	: 12-13
TIME ALOCATION	: 2 x 100 minutes

STANDARD OF COMPETENCY

Investigating (analyzing) capacity of reinforced concrete structural components and selecting (designing) reinforced concrete members to support a specified load, mainly on flexural reinforcement of plate/ slab and beam, and shear/ stirrup reinforcement of RC beam.

BASIC COMPETENCE

1. Design flexural/ longitudinal reinforcement of RC beam.

INDICATORS OF ACHIEVED COMPETENCE

- 1. Design flexural/ longitudinal reinforcement of simple beams.
- 2. Design flexural/ longitudinal reinforcement of continuous beams.
- 3. Draw detailed reinforcement of RC (eams)

I. COURSE OBJECTIVES

- 1. To be able designing flexural/longitudinal reinforcement of simple beams.
- 2. To be able designing flexural Appritudinal reinforcement of continuous beams.
- 3. To be able drawing detailed reinforcement of RC beams.

II. COURSE MATERIALS <

- 1. Flexural/ longitudinal reinforcement of simple beams.
- 2. Flexural/ longitudinal reinforcement of continuous beams.
- 3. Detailed engineering drawing.

III. TEACHING-LEARNING METHOD

- 1. Presentation
- 2. Discussion

IV. TEACHING-LEARNING STEPS

Opening:

- 1. Explaining course objectives.
- 2. Sampling oral pre-test.

Prepared by:	Please, do not copy parts or all of the contents without any	Checked by:
Slamet Widodo, S.T., M.T.	written permission from the Faculty of Engineering,	
	Yogyakarta State University	

I EACHING-LEARNIN	G ACTION PLAN OF I	REINFORCED CONCRE	IE SIRUCIURES I	>
No. RPP/SPR/230	Revision: 00	July 2, 2009	Page 2 of 2	(
Fifth semester	FLEXURAL DES	IGN OF RC BEAM	2 x 100 me nit	$\langle \rangle$
	STRU	CTURES		

0

3. Motivating.

B. Main Activities:

- 1. Explaining flexural design of simple RC beams
- 2. Explaining flexural design of continuous RC beams
- 3. Explaining detailed engineering drawing.

C. Closing:

- 1. Sampling oral post-test.
- 2. Summarizing.

V. Teaching Aids

- 1. Whiteboard and boardmarker.
- 2. Laptop (computer) and LCD Projector.

VI. RECOMMENDED TEXTBOOKS:

- 1. ACI Committee 318, (2008), Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary, American Concrete Institute.
- 2. Badan Standarisasi Nasional, (2013), SNI 2847: 2013: Persyaratan Beton Struktural untuk Bangunan Gedung, Badan Standardisasi Nasional.
- 3. Istimawan Dipohusodo, (1999), Struktur Beton Bertulang, Jakarta: Gramedia Pustaka Utama.
- 4. Park, R. and Paulay, T., (1975), Reinforced Concrete Structures, New York: John Wiley & Sons. Inc.
- 5. Nawy, E.G., (1996), Reinforced Concrete: A Fundamental Approach 3rd edition, New York: Prentice Hall.

- 1. Techniques: Written and oral test.
- 2. Score range: 0-100

Pr	epared by: amet Widodo, S.T., M.T.
Sla	amet Widodo, S.T., M.T.

TN2. ILII. N ST	STEGERI JOC	
	77	

I EACHING-LEARNIN	IG ACTION PLAN	OF REINFORCED CONCRE	ETE STRUCTUREST	2
No. RPP/SPR/230	Revision: 00	July 2, 2009	Page 1 of 2	
Fifth semester	SHEAR DES	SIGN OF RC BEAM	2 x 100 menit	<
	STI	RUCTURES		_

COURSE	: REINFORCED CONCRETE STRUCTURES I
COURSE CODE	: SPR 230 (2 CREDITS, THEORY)
STUDY PROGRAM	: CIVIL ENGINEERING AND PLANNING EDUCATION
SEMESTER	: V (Fifth)
WEEK	: 14-15
TIME ALOCATION	: 2 x 100 minutes

STANDARD OF COMPETENCY

Investigating (analyzing) capacity of reinforced concrete structural components and selecting (designing) reinforced concrete members to support a specified load, mainly on flexural reinforcement of plate/ slab and beam, and shear/ stirrup reinforcement of RC beam.

BASIC COMPETENCE

1. Design stirrup/ shear reinforcement of RC beam.

INDICATORS OF ACHIEVED COMPETENCE

- 1. Design stirrup/ shear reinforcement of simple beams.
- 2. Design stirrup/ shear reinforcement of continuous beams.
- 3. Draw detailed reinforcement of RC beams)

I. COURSE OBJECTIVES

- 1. To be able designing stirrup/ shear reinforcement of simple beams.
- 2. To be able designing stirrup/ shear reinforcement of continuous beams.
- 3. To be able drawing detailed reinforcement of RC beams.

II. COURSE MATERIALS 4

- 1. Stirrup/ shear reinforcement of simple beams.
- 2. Stirrup/ shear reinforcement of continuous beams.
- 3. Detailed engineering drawing.

III. TEACHING-LEARNING METHOD

- 1. Presentation
- 2. Discussion

IV. TEACHING-LEARNING STEPS

Opening:

- 1. Explaining course objectives.
- 1. Sampling oral pre-test.

\mathbf{V}	Prepared by: Slamet Widodo, S.T., M.T.	Please, do not copy parts or all of the contents without any written permission from the Faculty of Engineering, Yogyakarta State University	Checked by:
		Togyakarta State Oniversity	

FACULTY OF ENGINEERING YOGYAKARTA STATE UNIVERSITY EACHING J EADNING ACTION DI AN OF DEINFORCED CONCRETE STRUCTURES

I EACHING-LEARNIN	NG ACTION PLAN		LIE SIRUCIURESI	\geq
No. RPP/SPR/230	Revision: 00	July 2, 2009	Page 2 of 2	
Fifth semester	SHEAR DES	SIGN OF RC BEAM	2 x 100 menit	\mathbf{k}
	STI	RUCTURES		

0

2. Motivating.

B. Main Activities:

- 1. Explaining shear design of simple RC beams
- 2. Explaining shear design of continuous RC beams
- 3. Explaining detailed engineering drawing.

C. Closing:

- 1. Sampling oral post-test.
- 2. Summarizing.

V. Teaching Aids

- 1. Whiteboard and boardmarker.
- 2. Laptop (computer) and LCD Projector.

VI. RECOMMENDED TEXTBOOKS:

- 1. ACI Committee 318, (2008), Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary, American Concrete Institute.
- 2. Badan Standarisasi Nasional, (2013), SNI 2847: 2013: Persyaratan Beton Struktural untuk Bangunan Gedung, Badan Standardisasi Nasional.
- 3. Istimawan Dipohusodo, (1999), Struktur Beton Bertulang, Jakarta: Gramedia Pustaka Utama.
- 4. Park, R. and Paulay, T., (1975), Reinforced Concrete Structures, New York: John Wiley & Sons. Inc.
- 5. Nawy, E.G., (1996), Reinforced Concrete: A Fundamental Approach 3rd edition, New York: Prentice Hall.

- 1. Techniques: Written and oral test.
- 2. Score range: 0-100

/	Prepared by: Slamet Widodo, S.T., M.T.
_	Slamet Widodo, S.T., M.T.