
e-
mail

: s
wi

do
do

@
un

y.a
c.i

d

 1

PREDICTION OF FREE CHLORIDE CONTENT IN CEMENT BASED 
MATERIALS USING ARTIFICIAL NEURAL NETWORKS 

 

Slamet Widodo 
1)

 

1)
 Faculty of Engineering Yogyakarta State University 

 

ABSTRAK 

 
Korosi baja tulangan merupakan suatu fenomena degradasi yang sering ditemukan 
pada struktur beton bertulang. Kerusakan ini terutama disebabkan adanya 
kandungan khlorida bebas dalam beton yang dapat merusak selaput tipis pelindung 
tulangan dan berlanjut dengan korosi yang terjadi pada tulangan baja tersebut. 
Fenomena penetrasi khlorida ke dalam beton dipengaruhi oleh banyak faktor, salah 
satunya adalah jenis material yang digunakan, namun hingga saat ini belum dapat 
ditemukan metode analisis yang tepat untuk memprediksi hubungan antara 
komposisi adukan beton dengan kadar khlorida bebas di dalamnya. Dalam penelitian 
ini diusulkan penggunaan jaringan syaraf tiruan untuk memprediksi kandungan 
khlorida bebas dalam pasta semen dengan berbagai jenis bahan tambah mineral. 
Data yang diperlukan untuk membangun jaringan syaraf tiruan diperoleh dari hasil uji 
laboratorium pada 70 buah sampel pasta semen dengan mengganti sebagian semen 
dengan bahan GGBS (20%, 40%, 60%), silica fume (5%, 10%, 15%) dan fly ash 
(10%, 20%, 30%) dengan menambahkan khlorida pada saat pencampuran (internal 
chloride) dengan takaran sekitar 0.1%, 0.2%, 0.3%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5% 
dan 3.0% berdasarkan berat semen. Selanjutnya dilakukan analisis dengan jaringan 
syaraf tiruan menggunakan backpropagation algorithm dengan empat neuron input, 
dua hiden layer masing-masing terdapat empat neuron dan tiga neuron, dan 
dilakukan dalam 10.000 epochs. Hasil pengujian menunjukkan bahwa jaringan syaraf 
tiruan dengan arsitektur di atas mampu memberikan prediksi kandungan khlorida 
bebas dalam pasta semen dalam hubungannya dengan jenis bahan dasarnya dan 
takaran internal chloride yang ditambahkan dengan hasil yang baik. Hal ini 
ditunjukkan dengan nilai root mean square error (RMS) sebesar 0,031, mean 
absolute error (MAE) sebesar 0,023, nilai koefisien determinasi regresi linear (r

2
) 

sebesar 0,9898, dan persentase rata-rata kesalahan sebesar 9,094%.  
 
Kata Kunci :  Jaringan syaraf tiruan, khlorida bebas, internal chloride, pasta semen, 

mineral admixtures. 
 

INTRODUCTION 

Performance of concrete against sulfate attack, acid attack, carbonation, alkali-

aggregate reaction, freezing–thawing, abrasion, etc is named as durability. Chloride-induced 

corrosion is recognized as a major problem with regard to the service life of reinforced 

concrete. It is well known that the chlorides, no matter whether added during mixing or later 

transported into concrete, can be bound to the hydrated products in concrete by 

physisorption and chemisorption. This is called chloride binding capacity of concrete. The 
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threshold chloride level for onset of chloride-induced corrosion is generally expressed by total 

chloride content per weight unit cement. It is apparent that chloride binding capacity of 

concrete has influence on the threshold chloride level, since only unbound, or free, chloride 

ions in pore solution can possibly destroy the passive film on the surface of the steel bar and 

initiate corrosion. 

Nowadays facts show that many type of mineral admixtures have been widely used in 

concrete production based on economically reasons (lower quantity of cement required in 

concrete mixture), environmental (recycling waste from industrial process and saving natural 

resources), and also some performance reasons. Ground granulated blast furnace slag 

(GGBS), fly ash (FA) and silica fume (SF) are the most common mineral admixtures that 

widely used as concrete admixture to increase performance of concrete. According to Ha, et 

al (2007), fly ash could improve the permeability characteristics, increase chloride binding 

capacity of concrete and delayed the initial corrosion time and decrease of corrosion rate.  

The theory related with chloride binding capacity of cement based materials is still not 

fully developed due to the complexity of the problem and the large number of parameters 

controlling this behavior.  The prediction of the free chloride content in a mixture of cement 

based materials is very important for reinforced concrete long term performance, especially in 

reinforcement corrosion aspect. The proposed prediction method utilizes neural networks, an 

AI-based technique that emulates the human ability to learn from the past experience and 

derive quick solutions to new situations. The developed neural network based prediction 

model can be used by civil engineers to predict the free chloride content that closely related 

with corrosion initiation in reinforced concrete members. Because durability performance of 

concrete is influenced by many factors, this paper has been only focused on the free chloride 

content in various types of cement pastes. In the cement paste mixtures, admixtures to 

cement ratios were chosen as 20%, 40%, 60% for ground granulated blast furnace slag 

(GGBS), 10%, 20%, and 30% for fly ash (FA) and 5%, 10%, and 15% of silica fume (SF). In 

this way, the free chloride content in the cement pastes with different admixtures can be 

compared. Based on that reason, this paper aimed to evaluate the free chloride content in 

various cement paste mixtures using artificial neural network (ANN). 

 
LITERATURE REVIEW 

Chloride in Reinforced Concrete Structures 

Chloride ions when present in reinforced concrete can cause very severe corrosion of 

the steel reinforcement. The chloride ions will eventually reach the steel and then accumulate 
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to beyond a certain concentration level. The protective film around the steel is destroyed and 

corrosion will begin when oxygen and moisture are present in the steel-concrete interface. 

Chlorides can originate from two main sources as follows: Chloride added to the concrete at 

the time of mixing, often referred to as Internal Chloride. This category includes calcium 

chloride accelerators for rapid hardening concrete, salt contaminated aggregates and the use 

of sea water or other saline contaminated water. Chloride ingress into the concrete from the 

environment often referred to as External Chloride. This category includes both de-icing salt 

as applied to many highway structures and marine salt, either directly from sea water in 

structures such as piers, or in the form of air-borne salt spray in structures adjacent to the 

coast. The effect of chloride salts depends to some extent on the method of addition. If the 

chloride is added at the time of mixing, the calcium aluminate (C3A) within the cement paste 

will react with the chloride to some extent, chemically binding it to form calcium 

chloroaluminate that usually called as bound chloride. In this form, the chloride is insoluble 

in the pore fluid and is not available to take part in damaging corrosion reactions. The ability 

of the cement to chemically react with the chloride is however limited and depends on the 

type of cement. Sulphate resisting cement, for example, has a low C3A content and is 

therefore less able to react with the chlorides. 

Experience suggests that if the chloride exceeds about 0.4% by mass of cement, the 

risk of corrosion increases. This does not automatically mean that concretes with chloride 

levels higher than this are likely to suffer severe reinforcement corrosion: this depends on the 

permeability of the concrete and on the depth of carbonation in relation to the cover provided 

to the steel reinforcement. When the concrete carbonates, by reaction with atmospheric 

carbon dioxide, the bound chlorides are released. In effect this provides a higher 

concentration of soluble chloride immediately in front of the carbonation zone. Normal 

diffusion processes then cause the chloride to migrate into the concrete. This process, and 

normal transport of chlorides caused by water soaking into the concrete surface, is 

responsible for the effect sometimes observed where the chloride level is low at the surface, 

but increases to a peak a short distance into the concrete (usually just in front of the 

carbonation zone). The increase in unbound chloride or free chloride means that more is 

available to take part in corrosion reactions, so the combined effects of carbonation and 

chloride are worse than either effect alone. 

The depth/concentration profile for External chloride, which has penetrated hardened 

concrete, will show levels decreasing further from the surface. Chlorides present in the fresh 

concrete will tend to be evenly distributed throughout the concrete. Passivation of the steel 
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reinforcement in concrete normally occurs due to a two component system comprising a 

portlandite layer and a thin pH stabilized iron oxide/hydroxide film on the metal surface. 

When chloride ions are present, the passivity of the system is lost by dissolution of the 

portlandite layer, followed by debonding of the passive film. Physical processes operating 

inside the passive film may also contribute to its disruption. When chlorides have ingressed 

from an external source, particularly in conditions of saturation and low oxygen availability, 

insidious pitting corrosion of the reinforcement can occur, causing massive localised loss of 

cross section. This can occur in the early stages without disruption of the concrete 

underneath. 

The critical chloride content required to initiate corrosion depends on whether the 

chloride was present at the time of mixing, or has ingressed after hardening, as discussed 

above. Clearly this also depends on the temperature and humidity of the concrete and also 

whether the concrete has carbonated. Good quality concrete can often show a remarkable 

tolerance for chloride without significant damage, however, at chloride contents up to about 

1% by mass of cement (usually for chloride added at the time of mixing) reinforced concrete 

is much less tolerant of ingressed chloride. 

 
Artificial Neural Networks (ANN) 
 

One type of network sees the nodes as ‘artificial neurons’. These are called artificial 

neural networks (ANNs). An artificial neuron is a computational model inspired in the natural 

neurons. Natural neurons receive signals through synapses located on the dendrites or 

membrane of the neuron. When the signals received are strong enough (surpass a certain 

threshold), the neuron is activated and emits a signal though the axon. This signal might be 

sent to another synapse, and might activate other neurons. 

 

 
 

Figure 1. Biological Neural System 
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The complexity of real neurons is highly abstracted when modelling artificial neurons. 

These basically consist of inputs (like synapses), which are multiplied by weights (strength of 

the respective signals), and then computed by a mathematical function which determines the 

activation of the neuron. Another function (which may be the identity) computes the output of 

the artificial neuron (sometimes in dependance of a certain threshold). ANNs combine 

artificial neurons in order to process information. 

 

 

 

 

 

 

 

 

 

 
 

The higher a weight of an artificial neuron is, the stronger the input which is multiplied 

by it will be. Weights can also be negative, so we can say that the signal is inhibited by the 

negative weight. Depending on the weights, the computation of the neuron will be different. 

By adjusting the weights of an artificial neuron we can obtain the output we want for specific 

inputs. But when we have an ANN of hundreds or thousands of neurons, it would be quite 

complicated to find by hand all the necessary weights. But we can find algorithms which can 

adjust the weights of the ANN in order to obtain the desired output from the network. This 

process of adjusting the weights is called learning or training. 

The number of types of ANN and their uses is very high. Since the first neural model by 

McCulloch and Pitts (1943) there have been developed hundreds of different models 

considered as ANN. The differences in them might be the functions, the accepted values, the 

topology, the learning algorithms, etc. Since the function of ANN is to process information, 

they are used mainly in fields related with it. There are a wide variety of ANNs that are used 

to model real neural networks, and study behavior and control in animals and machines, but 

also there are ANNs which are used for engineering purposes, such as pattern recognition, 

forecasting, and data compression. Applications of neural networks in civil engineering are 

mainly oriented toward estimating or predicting values of some particular random variable, 
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Figure 2. Working System of an Artificial Neuron  
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such as: 1) forces on structures, 2) structural damage indicators, 3) scour depth and 

liquefaction, and 4) concrete materials science.  

In this research, ANN which learns using the backpropagation algorithm for learning 

the appropriate weights was used, since it is one of the most common models used in ANN, 

and many others are based on it. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The backpropagation algorithm that proposed by Rumelhart and McClelland (1986) is 

used in layered feed-forward ANNs. This means that the artificial neurons are organized in 

layers, and send their signals “forward”, and then the errors are propagated backwards. The 

network receives inputs by neurons in the input layer, and the output of the network is given 

by the neurons on an output layer. There may be one or more intermediate hidden layers. 

The backpropagation algorithm uses supervised learning, which means that we provide 

the algorithm with examples of the inputs and outputs we want the network to compute, and 

then the error (difference between actual and expected results) is calculated. The idea of the 

backpropagation algorithm is to reduce this error, until the ANN learns the training data. The 

training begins with random weights, and the goal is to adjust them so that the error will be 

minimal. 
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Figure 3. Framework of an ANN System 
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RESEARCH METHODOLOGY 

 
Experimental Setup 

Ordinary portland cement (OPC type I), ground granulated blast furnace slag (GGBS), 

pulverized fly ash (PFA), silica fume (SF), tap water, and sodium chloride (NaCl) were used 

in this experiment. In the cement paste mixtures, addition of mineral admixtures to cement 

ratios were chosen as 20%, 40%, 60% for ground granulated blast furnace slag (GGBS), 

10%, 20%, and 30% for fly ash (FA) and 5%, 10%, and 15% of silica fume (SF) with the value 

of water/binder ratio is 0.4. Internal chloride was also added in the mixtures in approximately 

0.1%, 0.2%, 0.3%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5%, and 3.0% by weight of the binder.  

After mixing and casting process, the curing period was done for 28 days using 

polyethylene wrapping method. The last procedure of this experiment was measuring the free 

chloride content (measured in percentage by weight of the binder) using titration method 

according to NT Build 208 (1996). In detail, this procedure was done by crushing cement 

paste specimens and collecting the dust (smaller than 75 µm), stirring up to certain 

temperature, extracting free chloride using filter, and analyzing free chloride content in 

titration method. 

   . 

Building a Neural Network 

To train a neural network, it is necessary to have a large number of data sets of high 

quality. The data that used for ANN training in the case of binder types effect on free chloride 

content in cement pastes, which is presented in this paper are based on the experimental 

result that have been done in Concrete Mechanics Materials and Engineering (CMME) 

Laboratory, Yonsei University, Seoul. The data have been collected from 70 specimens of 

cement paste, and all that data will be involved in the ANN training. 

The artificial neural network (ANN) analysis was performed in backpropragation 

learning method by using iData Analyzer (iDA) software, which is quite simple and helpful to 

be used.  

Trial and error method was used, in order to find a good neural networks architecture. 

Finally, it was found that a network architecture which was trained for 10,000 epochs 

(network pass) to learn the target mapping using 2 hidden layers with 4 neurons in the first 

hidden layer and 3 neurons for the second layer as shown in figure 4, can produce a good 

result.   
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RESULTS AND DISCUSSION 

ANN training was done using four independent variables (dosage of GGBS 

replacement, SF replacement, PFA replacement and addition of internal chloride) as input 

neurons, and one dependent variable (free chloride content) as the output neuron, and 

involving 70 instances. Table 1 show the comparison between experimental result and ANN 

prediction of the instances which are involved in the training. 

 
TABLE 1. Comparison of experimental results and ANN Prediction 

Instance GGBS SF PFA 
Internal 

Chloride 
Experiment 

Results 
ANN 

Prediction 
Absolute 
Error (%) 

#1 0.000 0.000 0.000 0.100 0.023 0.032 39.130 

#2 0.000 0.000 0.000 1.500 0.633 0.778 22.907 

#3 0.000 0.000 0.000 1.999 1.453 1.177 18.995 

#4 0.000 0.000 0.000 2.500 1.705 1.672 1.935 

#5 0.000 0.000 0.000 3.000 2.150 2.110 1.860 

#6 0.000 0.000 0.100 0.180 0.032 0.047 46.875 

#7 0.000 0.000 0.100 0.269 0.053 0.062 16.981 

#8 0.000 0.000 0.100 0.899 0.500 0.394 21.200 

#9 0.000 0.000 0.100 1.350 0.788 0.756 4.061 

#10 0.000 0.000 0.100 1.799 1.206 1.100 8.789 

#11 0.000 0.000 0.100 2.250 1.500 1.506 0.400 

2
nd

 Hidden layer 

1
st
 Hidden layer 

Free Chloride 
 
Content 

Internal  
 
Chloride 

SF 

PFA 

GGBS 

Fig. 4. Illustration of developed ANN model for free chloride content prediction 
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Instance GGBS SF PFA 
Internal 

Chloride 
Experiment 

Results 
ANN 

Prediction 
Absolute 
Error (%) 

#12 0.000 0.000 0.100 2.700 1.880 1.953 3.883 

#13 0.000 0.000 0.100 3.000 2.325 2.162 7.011 

#14 0.000 0.000 0.200 0.400 0.123 0.115 6.504 

#15 0.000 0.000 0.200 0.799 0.396 0.357 9.848 

#16 0.000 0.000 0.200 1.200 0.699 0.686 1.860 

#17 0.000 0.000 0.200 1.599 1.026 0.989 3.606 

#18 0.000 0.000 0.200 1.999 1.258 1.310 4.134 

#19 0.000 0.000 0.200 2.500 1.743 1.801 3.328 

#20 0.000 0.000 0.200 3.000 2.351 2.183 7.146 

#21 0.000 0.000 0.300 0.350 0.069 0.102 47.826 

#22 0.000 0.000 0.300 0.700 0.317 0.285 10.095 

#23 0.000 0.000 0.300 1.050 0.586 0.566 3.413 

#24 0.000 0.000 0.300 1.400 0.792 0.846 6.818 

#25 0.000 0.000 0.300 1.750 1.109 1.107 0.180 

#26 0.000 0.000 0.300 2.100 1.452 1.401 3.512 

#27 0.000 0.000 0.300 2.500 1.824 1.798 1.425 

#28 0.000 0.000 0.300 3.000 2.232 2.183 2.195 

#29 0.000 0.050 0.000 0.190 0.048 0.050 4.167 

#30 0.000 0.050 0.000 0.290 0.077 0.068 11.688 

#31 0.000 0.050 0.000 0.950 0.493 0.451 8.519 

#32 0.000 0.050 0.000 1.430 0.930 0.845 9.140 

#33 0.000 0.050 0.000 1.900 1.309 1.226 6.341 

#34 0.000 0.050 0.000 2.380 1.743 1.705 2.180 

#35 0.000 0.050 0.000 3.000 2.266 2.198 3.001 

#36 0.000 0.100 0.000 0.090 0.038 0.047 23.684 

#37 0.000 0.100 0.000 0.448 0.109 0.151 38.532 

#38 0.000 0.100 0.000 0.899 0.500 0.478 4.400 

#39 0.000 0.100 0.000 1.350 0.878 0.855 2.620 

#40 0.000 0.100 0.000 1.799 1.279 1.207 5.629 

#41 0.000 0.100 0.000 2.250 1.621 1.630 0.555 

#42 0.000 0.100 0.000 2.700 1.951 2.054 5.279 

#43 0.000 0.100 0.000 3.000 2.284 2.223 2.671 

#44 0.000 0.150 0.000 0.250 0.060 0.092 53.333 

#45 0.000 0.150 0.000 0.850 0.471 0.468 0.637 

#46 0.000 0.150 0.000 1.698 1.170 1.137 2.821 

#47 0.000 0.150 0.000 2.120 1.555 1.485 4.502 

#48 0.000 0.150 0.000 2.550 1.886 1.898 0.636 

#49 0.000 0.150 0.000 3.000 2.307 2.206 4.378 

#50 0.200 0.000 0.000 1.200 0.556 0.624 12.230 

#51 0.200 0.000 0.000 1.599 0.860 0.910 5.814 

#52 0.200 0.000 0.000 1.999 1.134 1.218 7.407 

#53 0.200 0.000 0.000 2.400 1.430 1.596 11.608 

#54 0.200 0.000 0.000 2.500 1.783 1.698 4.767 

#55 0.200 0.000 0.000 3.000 2.116 2.119 0.142 
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Instance GGBS SF PFA 
Internal 

Chloride 
Experiment 

Results 
ANN 

Prediction 
Absolute 
Error (%) 

#56 0.400 0.000 0.000 0.899 0.430 0.478 11.163 

#57 0.400 0.000 0.000 1.200 0.617 0.692 12.156 

#58 0.400 0.000 0.000 1.500 0.793 0.892 12.484 

#59 0.400 0.000 0.000 1.799 0.989 1.097 10.920 

#60 0.400 0.000 0.000 1.999 1.227 1.252 2.037 

#61 0.400 0.000 0.000 2.500 1.670 1.718 2.874 

#62 0.400 0.000 0.000 3.000 1.997 2.124 6.360 

#63 0.600 0.000 0.000 0.600 0.303 0.341 12.541 

#64 0.600 0.000 0.000 0.799 0.519 0.480 7.514 

#65 0.600 0.000 0.000 1.000 0.633 0.619 2.212 

#66 0.600 0.000 0.000 1.200 0.775 0.750 3.226 

#67 0.600 0.000 0.000 1.500 0.958 0.935 2.401 

#68 0.600 0.000 0.000 1.999 1.366 1.280 6.296 

#69 0.600 0.000 0.000 2.500 1.749 1.733 0.915 

#70 0.600 0.000 0.000 3.000 2.147 2.128 0.885 

Mean of absolute error percentage 9.094 

Test Data RMS = 0.031      

Test Data MAE = 0.023      
 

R2 = 0.9898
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Figure. 5. Comparison of experimental results and ANN prediction 
 

The outcomes that obtained using ANN modeling compared with the experimental 

results listed in Table 1, and plotted in Figure 5. ANN modeling result shows that the value of 
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root mean square error (RMS) is 0,031, mean absolute error (MAE) is 0,023, and the mean 

percentage of absolute error is 9,094%. According to Figure 5, it can be shown that the value 

of determination coefficient (R
2
) between experimental results and ANN prediction in linear 

regression (y=x) is 0.9898. Considering the value of RMS, MAE, mean of absolute error 

percentage, and determination coefficient (R
2
), it shows that the ANN modeling can predict 

the free chloride content close enough with the experimental results with relatively small error. 

 

CONCLUSION 

In this study, artificial neural networks (ANN) approach was employed to characterize 

relationship between free chloride content of cement pastes and its related parameters 

(ground granulated blast furnace slag (GGBS) replacement, pulverized fly ash (PFA) 

replacement, silica fume (SF) replacement, and added internal chloride). Actually, the ANN 

model exhibited relatively close performances with 0.9898 in terms of determination 

coefficient (R
2
) value, 0,031 for RMS, 0,023 for MAE, and 9,094% for the mean percentage of 

absolute error values. Based on above results, it can be concluded that ANN is possible to be 

utilized in the purpose of concrete durability performance prediction, especially for free 

chloride content prediction.  

 

Acknowledgements 

The writer would like to gratefully thank to Prof. Ha-Won Song for the great opportunity 

being research assistant at Concrete Mechanics, Materials, Engineering (CMME) Laboratory, 

Yonsei University, Seoul, especially in corrosion testing research, and Prof. Hyoungkwan Kim 

for the inspiring lectures in the course of information technology in construction management. 

  

References 

Goktepe A.B., Inan G., Ramyar K., and Sezer A., (2006), “Estimation of sulfate expansion 
level of PC mortars using statistical and neural approaches”, Construction and Building 
Materials (20), pp. 441-449. 

Ha T.H., Muralidharan S., Bae J.H., Ha Y.C., Lee H.G., Park K.W., and Kim D.K., (2007), 
“ Accelerated short-term techniques to evaluate the corrosion performance of steel in 
fly ash blended concrete”, Building and Environment (42), pp,78-85.  

Haj-Ali R.M., Kurtis K.E., and Sthapit A.R., (2001), “Neural Network Modeling of Concrete 
Expansion during Long-Term Sulfate Exposure”, ACI Materials Journal, Vol. 98, pp. 36-
43. 



e-
mail

: s
wi

do
do

@
un

y.a
c.i

d

 12

Jepsen M.T., (2002), “Predicting concrete durability by using artificial neural networks”, 
Proceeding of Durability of Exposed Concrete Containing Secondary Cementitious 
Materials, Hirtshals. 

Peng J., Li Z., and Ma B., (2002), “Neural Network Analysis of Chloride Diffusion in Concrete”, 
Journal of Materials in Civil Engineering, Vol. 14, No. 4, pp 327-333 

Roiger R.J., and Geatz M.W., (2003), Data Mining a Tutorial Based Primer, Boston: Addison 
Wesley. 
 

 

 

 


