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ABSTRAK
Korosi baja tulangan merupakan suatu fenomena degradasi g serxing ditemukan

pada struktur beton bertulang. Kerusakan ini teruta
kandungan khlorida bebas dalam beton yang dapat merusal
tulangan dan berlanjut dengan korosi yang terjadi p

Fenomena penetrasi khlorida ke dalam beton

abkan adanya
put tipis pelindung
an baja tersebut.
anyak faktor, salah
\gga saat ini belum dapat
diksi hubungan antara
amnya. Dalam penelitian
emprediksi kandungan

satunya adalah jenis material yang digunakan, /i
ditemukan metode analisis yang tepat unt
komposisi adukan beton dengan kadar khlorida \-‘s

Data yang diperlukan untuk membangun ja syaraf tiruan diperoleh dari hasil uji
laboratorium pada 70 buah sampel pa: gan mengganti sebagian semen
dengan bahan GGBS (20%, 40%, 60% (5%, 10%, 15%) dan fly ash
(10%, 20%, 30%) dengan menambahke grida pada saat pencampuran (internal
chloride) dengan takaran sekitar 0,4%

dan 3.0% berdasarkan berat se %
z. D |

syaraf tiruan menggunakangbac
dua hiden layer masing-masi dapat empat neuron dan tiga neuron, dan

dilakukan dalam 10.000 00% il pengujian menunjukkan bahwa jaringan syaraf
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tiruan dengan arsitektQr ampu memberikan prediksi kandungan khlorida
bebas dalam pasta se ubungannya dengan jenis bahan dasarnya dan

Ny ditambahkan dengan hasil yang baik. Hal ini
ot mean square error (RMS) sebesar 0,031, mean
sebesar 0,023, nilai koefisien determinasi regresi linear (r°)
sebesar 0,9898, danpetgentase rata-rata kesalahan sebesar 9,094%.

Kata Kunci : ingan syaraf tiruan, khlorida bebas, internal chloride, pasta semen,
mine dmixtures.

INTRO '%N
o &
Pé% of concrete against sulfate attack, acid attack, carbonation, alkali-
re

aggr ion, freezing—thawing, abrasion, etc is named as durability. Chloride-induced

corrosj recognized as a major problem with regard to the service life of reinforced

€1t is well known that the chlorides, no matter whether added during mixing or later
ported into concrete, can be bound to the hydrated products in concrete by

hysisorption and chemisorption. This is called chloride binding capacity of concrete. The
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threshold chloride level for onset of chloride-induced corrosion is generally express totaky
chloride content per weight unit cement. It is apparent that chloride binding capacity/ of
concrete has influence on the threshold chloride level, since only unbound, or fre ride
ions in pore solution can possibly destroy the passive film on the surface of the s ar and

initiate corrosion. o
Nowadays facts show that many type of mineral admixtures ha ee\widely used in
concrete production based on economically reasons (lower qua cem required in

i
concrete mixture), environmental (recycling waste from industrialQrecess™ahd saving natural
resources), and also some performance reasons. Ground ¢ a blast furnace slag

(GGBS), fly ash (FA) and silica fume (SF) are the most on)rineral admixtures that

based materials is very important for reinfo @

reinforcement corrosion aspect. The @ prediction method utilizes neural networks, an
Al-based technique that emulates_theniuman ability to learn from the past experience and

concrete is influenced by tors, this paper has been only focused on the free chloride

content in various t ment pastes. In the cement paste mixtures, admixtures to
cement ratios wer as 20%, 40%, 60% for ground granulated blast furnace slag
(GGBS), 10%, 20%, a % for fly ash (FA) and 5%, 10%, and 15% of silica fume (SF). In

this way, the/free chloride content in the cement pastes with different admixtures can be
comp@re ased@ that reason, this paper aimed to evaluate the free chloride content in
various % ste mixtures using artificial neural network (ANN).

LIT@@ REVIEW
h

ide in Reinforced Concrete Structures

Chloride ions when present in reinforced concrete can cause very severe corrosion of

y steel reinforcement. The chloride ions will eventually reach the steel and then accumulate
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to beyond a certain concentration level. The protective film around the steel is destr
corrosion will begin when oxygen and moisture are present in the steel-concrete @
Chlorides can originate from two main sources as follows: Chloride added to t e at
the time of mixing, often referred to as Internal Chloride. This category inclu alcium

chloride accelerators for rapid hardening concrete, salt contaminated agg ateS@d the use

of sea water or other saline contaminated water. Chloride ingress int crete from the

environment often referred to as External Chloride. This category j es both\de-icing salt
as applied to many highway structures and marine salt, eithe ctly™rom>~sea water in
structures such as piers, or in the form of air-borne salt spray res adjacent to the
coast. The effect of chloride salts depends to some extent hod of addition. If the
within the cement paste
will react with the chloride to some extent, € ¥ /binding it to form calcium
chloroaluminate that usually called as bound chloride, \I-th |s“rm, the chloride is insoluble
r~damaging corrosion reactions. The ability
of the cement to chemically react with t hlo
type of cement. Sulphate resisting cem xample, has a low C3A content and is
therefore less able to react with the chlorid
Experience suggests that if the e exceeds about 0.4% by mass of cement, the
tomatically mean that concretes with chloride

levels higher than this are likely evere reinforcement corrosion: this depends on the

permeability of the concrete depth of carbonation in relation to the cover provided

to the steel reinforcement. € e concrete carbonates, by reaction with atmospheric

carbon dioxide, the b rides are released. In effect this provides a higher
concentration of sol ide immediately in front of the carbonation zone. Normal
diffusion processes (t use the chloride to migrate into the concrete. This process, and
normal transport of ides caused by water soaking into the concrete surface, is
responsible @s the effect sometimes observed where the chloride level is low at the surface,
but ier s to @peak a short distance into the concrete (usually just in front of the

carbon z . The increase in unbound chloride or free chloride means that more is

availablg e part in corrosion reactions, so the combined effects of carbonation and
chloride( arg) worse than either effect alone.

€ depth/concentration profile for External chloride, which has penetrated hardened
rete, will show levels decreasing further from the surface. Chlorides present in the fresh

ncrete will tend to be evenly distributed throughout the concrete. Passivation of the steel

7



reinforcement in concrete normally occurs due to a two component system co ing L
portlandite layer and a thin pH stabilized iron oxide/hydroxide film on the meta f
When chloride ions are present, the passivity of the system is lost by disgglu the
portlandite layer, followed by debonding of the passive film. Physical process rating
inside the passive film may also contribute to its disruption. When chlori

hav®ingressed
from an external source, particularly in conditions of saturation and en availability,

insidious pitting corrosion of the reinforcement can occur, causing

cross section. This can occur in the early stages without ptionv of “the concrete
underneath.
The critical chloride content required to initiate corfegi ends on whether the

hardening, as discussed
idity of the concrete and also

n often show a remarkable
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@ Figure 1. Biological Neural System
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The complexity of real neurons is highly abstracted when modelling artificial rons<
These basically consist of inputs (like synapses), which are multiplied by weights (s t

the respective signals), and then computed by a mathematical function which d¢
activation of the neuron. Another function (which may be the identity) computes th
the artificial neuron (sometimes in dependance of a certain thresho AN@ combine

artificial neurons in order to process information.

Function

]

Input £ of
D Activation
=

«(@

Figure 2. Working System of an Atrtificial Neuron

The higher a weight of an artificia wron-is, the stronger the input which is multiplied
by it will be. Weights can also kgneg @. we can say that the signal is inhibited by the
negative weight. Depending on the~weights, the computation of the neuron will be different.
By adjusting the weights ofa a euron we can obtain the output we want for specific
%f hundreds or thousands of neurons, it would be quite

€ necessary weights. But we can find algorithms which can

inputs. But when we have

complicated to find by h
adjust the weights of in order to obtain the desired output from the network. This
process of adjustingthe weights is called learning or training.

The number 0 of ANN and their uses is very high. Since the first neural model by
McCulloch and Pitts (1943) there have been developed hundreds of different models
consid as AN%The differences in them might be the functions, the accepted values, the
topolcﬁmmng algorithms, etc. Since the function of ANN is to process information,
they >%yainly in fields related with it. There are a wide variety of ANNs that are used
to neural networks, and study behavior and control in animals and machines, but

re ANNs which are used for engineering purposes, such as pattern recognition,
casting, and data compression. Applications of neural networks in civil engineering are

e
mainty oriented toward estimating or predicting values of some particular random variable,

@



liquefaction, and 4) concrete materials science.

such as: 1) forces on structures, 2) structural damage indicators, 3) scour d@o@
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Figure 3. Framework of an ANN System

The backpropagati ithm that proposed by Rumelhart and McClelland (1986) is

used in layered feed- ANNs. This means that the artificial neurons are organized in
layers, and send théif signals™forward”, and then the errors are propagated backwards. The
network receives inputs by/neurons in the input layer, and the output of the network is given
by the neur02§ on an output layer. There may be one or more intermediate hidden layers.

T ackprog7agation algorithm uses supervised learning, which means that we provide
the a@%h examples of the inputs and outputs we want the network to compute, and
er

then the ifference between actual and expected results) is calculated. The idea of the

bac ea@_ ation algorithm is to reduce this error, until the ANN /earns the training data. The

AN
i

agins with random weights, and the goal is to adjust them so that the error will be



RESEARCH METHODOLOGY @O
Experimental Setup

Ordinary portland cement (OPC type |), ground granulated blast furnace sl GBS),
pulverized fly ash (PFA), silica fume (SF), tap water, and sodium chlorid NaCL@vere used

in this experiment. In the cement paste mixtures, addition of mineral res to cement

ratios were chosen as 20%, 40%, 60% for ground granulated bl nace\slag (GGBS),
10%, 20%, and 30% for fly ash (FA) and 5%, 10%, and 15% of sil ume8F) with the value
of water/binder ratio is 0.4. Internal chloride was also added in es in approximately

0.1%, 0.2%, 0.3%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5%, and 3.09 ight of the binder.

paste specimens and collecting the d han 75 um), stirring up to certain
temperature, extracting free chloride usipg i and analyzing free chloride content in

titration method.

Building a Neural Network

ihing in the case of binder types effect on free chloride

content in cement pastes, wt iS“presented in this paper are based on the experimental

result that have been_doge n~Concrete Mechanics Materials and Engineering (CMME)
Laboratory, Yonsei Anive Seoul. The data have been collected from 70 specimens of
cement paste, and at)data will be involved in the ANN training.

The artificial neural network (ANN) analysis was performed in backpropragation

learnin et@d by using iData Analyzer (iDA) software, which is quite simple and helpful to
be us@&o
TM ror method was used, in order to find a good neural networks architecture.

was found that a network architecture which was trained for 10,000 epochs
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Fig. 4. lllustration of developed ANN model for free chloride content prediction

RESULTS AND DISCUSSION Q

S|r independent variables (dosage of GGBS

replacement, SF replacement, PFA~gplacement and addition of internal chloride) as input
neurons, and one dependént_varia free chloride content) as the output neuron, and
involving 70 instances. Table\] the comparison between experimental result and ANN

prediction of the instanc

ANN training was doné

re involved in the training.

TABLE 1. Compari?e/@ imental results and ANN Prediction

)
Q@ Internal Experiment ANN Absolute
Instance GGBS SF PFA Chloride Results Prediction Error (%)

#1 &.000 0.000 0.000 0.100 0.023 0.032 39.130
0.000 0.000 0.000 1.500 0.633 0.778 22.907

OH3 0007 0.000 0.000 1.999 1.453 1.177 18.995
0 0.000 0.000 2.500 1.705 1.672 1.935

#S 0.000 0.000 3.000 2.150 2.110 1.860
A . 0.000 0.100 0.180 0.032 0.047 46.875
0.000 0.100 0.269 0.053 0.062 16.981

0.000 0.100 0.899 0.500 0.394 21.200

0.000 0.100 1.350 0.788 0.756 4.061

0.000 0.100 1.799 1.206 1.100 8.789

0.000 0.100 2.250 1.500 1.506 0.400
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Internal Experiment ANN lutelV
Instance GGBS SF PFA Chloride Results Prediction é@? (%
#12 0.000 0.000 0.100 2.700 1.880 1.95 3883
#13 0.000 0.000 0.100 3.000 2.325 2.16 11
#14 0.000 0.000 0.200 0.400 0.123 0.11 6.504
#15 0.000 0.000 0.200 0.799 0.396 .357 9.848
#16 0.000 0.000 0.200 1.200 0.699 86 1.860
#17 0.000 0.000 0.200 1.599 1.026 3.606
#18 0.000 0.000 0.200 1.999 4.134
#19 0.000 0.000 0.200 2.500 3.328
#20 0.000 0.000 0.200 3.000 7.146
#21 0.000 0.000 0.300 0.350 47.826
#22 0.000 0.000 0.300 10.095
#23 0.000 0.000 0.300 3.413
#24 0.000 0.000 0.300 6.818
#25 0.000 0.000 0.300 0.180
#26 0.000 0.000 0.300 3.512
#27 0.000 0.000 0.300 1.425
#28 0.000 0.000 0.300 2.195
#29 0.000 0.050 0.000 4.167
#30 0.000 11.688
#31 0.000 8.519
#32 0.000 9.140
#33 0.000 6.341
#34 0.000 2.180
#35 0.000 3.001
#36 0.000 23.684
#37 0.000 38.532
#38 0.000 4.400
#39 0.000 2.620
#40 0.000 5.629
#41 0.000 0.555
#42 0.00 5.279
#43 0.00 2.671
#44 0.000 150 53.333
#45 .000 0.637
# 0.08& 2.821
a7 .0 4.502
#% 0 0.636
.000 4.378
# 0.200 12.230
0.200 5.814
0.200 7.407
#33 0.200 11.608
54 0.200 4.767
#55 0.200 0.142
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Internal Experiment ANN lutelV

Instance GGBS SF PFA Chloride Results Prediction or (4@
#56 0.400 0.000 0.000 0.899 0.430
#57 0.400 0.000 0.000 1.200 0.617
#58 0.400 0.000 0.000 1.500 0.793
#59 0.400 0.000 0.000 1.799 0.989
#60 0.400 0.000 0.000 1.999 1.227 520 2037
#61 0.400 0.000 0.000 2.500 1.670 2.874
#62 0.400 0.000 0.000 3.000 6.360
#63 0.600 0.000 0.000 0.600 12.541
#64 0.600 0.000 0.000 0.799 7.514
#65 0.600 0.000 0.000 1.000 2.212
#66 0.600 0.000 0.000 1.200 3.226
#67 0.600 0.000 0.000 1.500 2.401
#68 0.600 0.000 0.000 1.999 6.296
#69 0.600 0.000 0.000 2.500 0.915
#70 0.600 0.000 0.000 3.000 0.885

| Mean of absolute error percent | 9.094 |

Test Data RMS = 0.031
Test Data MAE = 0.023

ANN Prediction

Q

N

Figure. 5. Comparison of experimental results and ANN prediction
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e outcomes that obtained using ANN modeling compared with the experimental

esulfs listed in Table 1, and plotted in Figure 5. ANN modeling result shows that the value of

10
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root mean square error (RMS) is 0,031, mean absolute error (MAE) is 0,023, and early
percentage of absolute error is 9,094%. According to Figure 5, it can be shown that@e
of determination coefficient (R?) between experimental results and ANN predicfi inear
regression (y=x) is 0.9898. Considering the value of RMS, MAE, mean of ab error
percentage, and determination coefficient (R?), it shows that the ANN eIing@an predict

the free chloride content close enough with the experimental results wj latively small error.
CONCLUSION
In this study, artificial neural networks (ANN) approach wa oyed to characterize

st its related parameters
gplacement, pulverized fly ash (PFA)

oo@a hloride). Actually, the ANN
model exhibited relatively close performances w in terms of determination
coefficient (R2) value, 0,031 for RMS, 0,023 for | % d 9,094% for the mean percentage of
N .Ii.."ﬁ concluded that ANN is possible to be

- ormance prediction, especially for free

chloride content prediction.
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