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a.  its ordinate is zero,  
b.  its abscissa is zero? 

4.  What points have their abscissas equal to 2? For what points are the ordinates equal to 2? 
5.  Where may a point  be  if  

a. its abscissa is equal to its ordinate,  
b. its abscissa is equal to the negative of  its ordinate? 

6.  Determine the coordinate of the point symmetric to (5, 4) with respect to 
a. the origin 
b. the x-axis 
c. the y-axis 

7.  Find the projections of each of the following segments on the x-axis and on the y-axis respectively 
a.  from A(-3, -5) to B(4, -6) 
b.  from A(2, -3) to B(-2, 5) 

 

2. DISTANCE OF TWO POINTS 

Recall Pythagoras'  Theorem: For a right-angled triangle with hypotenuse 
length c, 

     ܿ ൌ √ܽଶ ൅ ܾଶ 

We use this to find the distance between any two points (x1, y1) and (x2, y2) on the Cartesian plane. 

The point (x2, y1) is at the right angle. We can see that:  

• The distance between the points (x1, y1) and (x2, y1) is 
simply |x2 − x1| and  

• The distance between the points (x2, y2) and (x2, y1) is 
simply |y2 − y1|.  

Using Pythagoras' Theorem we have the distance between (x1, y1) 
and (x2, y2) given by: 

 

Example 

Find the distance between the points (3, -4) and (5, 7). 

Answer 
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Exercises 

1. Find the coordinates of the point that divides the segment from A(3, 4) to B(-2, 7) in the ratio 3:5. 
2. What are the coordinates of the point P such that AP=3/5AB, where A has the coordinates (-2, -1) 

and B has the coordinates (5, 6) ? 
3. Two points of a given segment are A(-3, 2) and B(5, -4). Find the coordinates of the points P and Q 

on the line containing A and B such that 
a. AP=7/3AB 
b. AP=7/3QB 

4. One end point of a segment is (3, -4) and the mid-point of the segment is (-2, 1). What are the 
coordinates of the other end point of the segment ? 

5. In what ratio does the point (0, 2) divide the segment whose end points are (-3, 0) and (3, 4) 
6. Find y if the point (2, y) lies on the line joining the points (-3, 4) and (6, -3) 

 

4. OBLIQUE COORDINATE SYSTEM 
On rectangular coordinate system, the angle formed by x-axis and y-axis is right angle. When the 

axes are not rectangular, we called oblique coordinate system. It is the custom to designate the angle by 
ω. Then by the law of cosines, the distant formula will be 

݀ଶ ൌ ଵܲܳଶ ൅ ܳ ଶܲ
ଶ െ 2 ଵܲܳ. ܳ ଶܲcos ሺ180଴ െ ߱ሻ 

That is, since cos(180-ω) = - cosω we have 

 ݀ ൌ ඥሺݔଶ െ ଵሻଶݔ ൅ ሺݕଶ െ ଵሻଶݕ ൅ 2ሺݔଶ െ ଶݕଵሻሺݔ െ  ߱ݏ݋ଵሻܿݕ

Exercises 

1. Find the distance between points A(-2,9) and B(1,1) in oblique coordinate system with ω=60o. 
2. Exchange the coordinates of points A(-2,9) and (1,1) in oblique coordinate with ω=60o into 

rectangular coordinate. 
 

5. POLAR COORDINATE SYSTEM 

A second serviceable system in our assumed plane has for reference 
an initial ray, or `half' line, and its initial end point 0, called the pole. An 
ordered pair of numbers (r, θ) then locates a point P whose directed distance from 0 is r, the radius vector 
of P; and this vector makes the angle 0 with the initial ray. The angle of the pair is positive when 
measured from the initial ray in the counterclockwise direction, negative when clockwise. A negative 
distance r is to be interpreted as the extension of the radius vector "backward" through the pole 0.  

For example, (-2, 30°) is plotted by drawing a radius vector at +30° from the initial ray, then 
extending this line backward from 0 a length two units. It should be noted that although a single point is 
determined by a given  pair of polar coordinates, the converse is not true. A selected point has an 



unlimited number of coordinate pairs. For example, the pairs (2, 30°), (-2, 210°), (-2, -150°), and (2, -
330°) all designate the same point. If the angle is given in radian measure, there will be no symbol 
attached. 
 
Exchange of Systems.  

The rectangular and polar coordinate systems may be exchanged one for the other by making the 
pole and the origin coincident, and the x-axis co incident with the initial ray as shown. Thus a point P 
may have coordinates (x, y) in the rectangular system and (r, 0) in the polar system. Relationships 
between these two sets of coordinates are apparently 

 

 
These relationships permit the transfer of coordinates in one system to the other. For example, 

(V3, 1) in rectangular coordinates can be written as (2, 30°) in polar coordinates; whereas (-1, 5π/6) polar, 
is (V3/2, -1/2 ) rectangular. 
Exercises  

1. Change the following polar coordinates to rectangular coordinates and plot the points (a, 0), (0, 
a), (1, π/2), (-1, 7π/2), (-1, -,π/2), (-2, 120°), (-1, 7π) 

2. Determine for each of the following points in rectangular coordinates four sets of polar 
coordinates with 0≤θ≤2π, (0, 1), (1, 0), (-1, 0), (0, -1), (3, 1), (1, -1) 

 


