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Chapter I    Introduction 

Psychology of mathematics learning 

Psychology is a science that has been introduced since very long time ago. It 

lies between biology and culture that specifically explores the causes of thought, act, 

and behavior. Educational psychology is one of the branches that narrow the science 

of psychology into the educational field. The scope of educational psychology can be 

cognitive development, physical development, social and moral development, 

motivation, intelligence, individual differences, cognitive processes, testing, 

measurement and assessment as well as classroom teaching. The educational 

psychology that is specified on cognition is usually called  psychology of learning. 

Scientists in this field attempt to uncover the process of learning and thinking as well 

as how this affects learners‟ behaviour.  

Mathematics as knowledge or a school subject has its own character that 

might differ from the others. Basically it has objects that are structurally rigid in 

patterns and relations. It might become an open thought of connections between 

mathematical objects too. Its objects are mostly a result of abstractions that are 

represented in symbols and notations. Therefore, mathematics cognition should be 

based on these characters in order to construct knowledge and therefore facilitate 

learning. Accordingly, the psychology of mathematics learning is a specific of 

psychology science on mathematics cognition. 
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Meaningful learning 

 

In behavior psychology view, learning is often defined as a permanent change 

of behavior and hence, learning activity is focused on giving feedback or reward to 

stimulate change of behavior. However, this definition has been doubted by many 

cognitive psychologists. In cognitive psychology view, learning is defined as an 

activity of knowledge construction that changes the structure of previously acquired 

knowledge. Sweller (1999) defines learning as restructuring knowledge in long term 

memory where we hold knowledge permanently. It can be argued that eventually 

knowledge constructed by learners might affect not only their thought but also 

changes of their acts or behavior. 

According to the outcome, learning can be distinguished into two: rote 

learning and meaningful learning. Through rote learning, a learner might not 

understand deeply the material since the acquisition is not accompanied by an effort 

to link among elements of learning material. A learner simply memorizes them. 

Although memorizing some elements is important to learning, learning is not in-

depth. Learners might not fully understand the meaning and the use of the 

knowledge.  

On the other hand, through meaningful learning, a learner puts some efforts to 

understand the learning material deeply. Understanding is reached by linking 
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materials to be learned with previously learned knowledge. In addition to this, Mayer 

(1999) emphasizes that the critical role of learning is to facilitate the transfer of skill, 

that is the ability of a learner not only to construct knowledge but to apply knowledge 

into problem solving. Furthermore, it is mentioned that transfer of knowledge occurs 

when a learner possesses well-structured knowledge in which relevant element of 

knowledge are closely connected. This could occur when meaningful learning is 

facilitated. 

The above discussion indicates the importance of our knowledge on cognitive 

architecture and thus meaningful learning occurs. Learning itself indeed involves 

activities in our memory system and therefore it should be used as the ground on 

creating effective and efficient learning instructions.  

This book specifically covers cognitive psychology perspective on learning 

mathematics meaningfully. The following chapters include how our cognition works 

during knowledge construction and how effective mathematics knowledge 

construction can be facilitated. 
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Chapter II    Human Cognitive Architecture 

 

Human cognitive architecture refers to the structure of human memory and its 

functions when processing information, learning and problem solving (Sweller, 

2003). There are three major components of memory: sensory memory, working 

memory and long-term memory. Cognitive activities such as how learners acquire 

and automate knowledge, solve problems, and develop expertise are reviewed in the 

second section. 

 

Human Memory 

The human memory system is often considered an information processing 

system. To describe how information is processed and organised in different memory 

stages, the modal model is historically considered a useful guide. 

 

The modal model 

An early version of the modal model was developed by Waugh and Norman 

(1965), who partitioned human memory into two independent memory systems: 

primary and secondary memory (see Figure 1). A key feature was that rehearsal in 
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primary memory enabled stimuli to be encoded into secondary memory. In this 

model, primary memory was assumed to have limited capacity and, as a consequence, 

most incoming stimuli if unrehearsed were forgotten. 

 

Figure 1. The primary and secondary memory system (Waugh & Norman, 

1965, p. 93) 

 

Shiffrin and Atkinson (1969) developed a more complex model, commonly 

referred to as the modal model. This model separated the memory system into a short-

term store and long-term store, and included a sensory register which was the first 

part of the memory system to receive information from the environment (see Figure 

2). The short-term store controlled the flow of information from the sensory register 

into the short-term store and eventually into the long-term store. The control process 

involved activities such as analysing incoming stimuli, activating rehearsal, searching 

and retrieving strategies, and altering, modifying, encoding and transferring 

mechanisms between the different memory systems (Shiffrin & Atkinson, 1969).   
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Figure 2. The flow chart of the memory system, adapted from Shiffrin and 

Atkinson (1969, p. 180). Solid lines describe path of information transfer, broken 

lines illustrate paths of control activities. 

 

R.C. Atkinson and Shiffrin (1971) later revised their modal model as a unified 

system by placing the control process inside the short-term store (see Figure 3). It 

was assumed that the short-term store was central to the cognitive system, playing the 

major role in information processing, such as rehearsing, encoding, and retrieving 

strategies. 
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Figure 3. The information flow (R.C. Atkinson & Shiffrin, 1971, p. 82) 

 

These early models provided a general idea of how memory works and how 

information flows between the different memory components. Other researchers (e.g., 

Baddeley, 1992, 2002; Ericsson & Kintsch, 1995) have built on these and developed 

more sophisticated models that more closely match the various cognitive processes 

that occur when humans learn and solve problems. Nevertheless, many memory 

models recognise that there are three major components to human memory, which are 

described in more detail in the following sections.  

Sensory memory 

Sensory memory is assumed to be the first memory system that holds stimuli 

received from the environment (R. C. Atkinson & Shiffrin, 1968). We have five 
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sensory registers (e.g., sight, hearing, smell, taste, touch) that detect stimuli from the 

environment. However, most of the research into sensory memory has focused on 

visual and auditory stimuli. By allocating attention or cognitive resources, sensory 

memory perceives incoming stimuli (R. C. Atkinson & Shiffrin, 1968). Prior 

knowledge stored in long term memory allows sensory memory to recognise patterns 

of stimuli (pattern recognition) which, once recognised, is assigned meaning in the 

short-term store (Cowan, 2005). To illustrate, when we read these letters, because we 

have prior knowledge about scripts, sensory memory through the visual sense will 

recognise these letters as scripts. We also know that scripts have meaning and we 

must pay attention to them. Therefore sensory memory encodes and transfers the 

stimuli (scripts) into working memory to construct their meaning. 

A major feature of sensory memory is that it has a severely limited capacity and 

duration (Darwin, Turvey, & Crowder, 1972; Sperling, 1960; von Wright, 1972).The 

visual and auditory sensory registers have been extensively investigated. Sperling 

(1960), as well as von Wright (1972), demonstrated that the visual register (iconic 

store) is able to hold only a limited number of visual stimuli (e.g., a set of letters, 

numbers or icons) for a fraction of a second, and once the cue (sight) has disappeared, 

the number of stimuli retained by the visual sensory register rapidly decreases over 

time. Darwin et al. (1972) found that the auditory register (echo store) is also only 

able to hold a limited number of auditory stimuli (e.g., spoken letters) for a few 
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seconds (i.e., less than 3 seconds) and then the number decreases as soon as the cue 

(echo) disappears.  

The limitation of sensory memory has specific consequences, in that sensory 

memory is seldom able to perceive every incoming stimulus or transfer every 

stimulus into working memory. Unattended stimuli in sensory memory are quickly 

forgotten (R. C. Atkinson & Shiffrin, 1968, 1969; Waugh & Norman, 1965). As the 

environment changes rapidly, any memory stored is soon replaced by new stimuli. 

 In summary, sensory memory involves perception, pattern recognition and the 

assignment of meaning using prior knowledge stored in long-term memory. Its 

limited capacity and duration dictate that, at any given time, only a limited amount of 

stimuli can be perceived by a learner. If assignment of meaning is made, then stimuli 

are transferred into working memory.  

 

Working memory 

Baddeley and Hitch (1974) introduced the term working memory to replace the 

terms primary memory or short-term memory used by R. C. Atkinson and Shiffrin 

(1968, 1971). It was argued that the function of this memory component was not 

simply to provide a temporary store for information, but also to conduct complex 

cognitive activities. Working memory is also related to consciousness, because when 

we are actively processing or storing information in working memory, we are aware 
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of such processes (Baddeley, 2007; Sweller, 2003). However, the cognitive processes 

conducted in working memory can be both controlled and automatic (Baars & 

Franklin, 2003). Processing the meaning of new text, for an example, can be a 

controlled process because we may be searching for meaning and conscious of doing 

this, whereas while reading the actual words in the text, it will be more automatic 

because we are familiar with the actual words. 

Working memory: limited capacity. Like sensory memory, working 

memory has a limited capacity. Under most circumstance, working memory is only 

able to hold about five to nine chunks (seven plus or minus two) of information 

simultaneously (Miller, 1956). Miller‟s findings were revisited more recently by 

Cowan (2000), who revealed that working memory can only hold less than four 

chunks of information simultaneously during more complex cognitive activities, such 

as evaluating, contrasting, or combining new and old knowledge. Ericsson and 

Kintsch (1995) asserted that these limitations apply for novel material only. When 

working memory deals with well-learned material stored in long-term memory, its 

limitation reduces. Other researchers, such as Oberauer and Hein (2012), have argued 

that learners can only pay attention to a single chunk of information at a given time; 

meanwhile, Sweller et al. (2011) have suggested that the relative capacity of working 

memory depends entirely on the complexity of the cognitive process performed. 

Learning new skills or solving high complexity problems in novel situations 
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considerably reduces the capacity of working memory to deal with the amount of 

information presented. 

Working memory: limited processing duration. Not only is working 

memory limited in capacity, but it is also limited in duration. Peterson and Peterson 

(1959) found that information stored in working memory starts to disappear within a 

few seconds and is completely lost after 20 seconds because of interference, decay 

and replacement by subsequent information. Rehearsal can maintain the information 

in working memory and overcome its loss. But if information is not rehearsed, it will 

be quickly forgotten (Waugh & Norman, 1965).  

Baddeley and Hitch’s working memory model. In contrast to the unitary 

system of working memory proposed by Atkinson and Shiffrin, Baddeley and Hitch 

(1974) developed a more precise model of working memory. This model sought to 

explain how received visual or auditory information was processed. As can be seen in 

Figure 4, the model consisted of three components (Baddeley, 1992). 
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Figure 4. The simplified model of working memory system, adapted from 

Baddeley (1992, p.557) 

 

There is a central executive, which is assumed to be the central controller that 

guides how stimuli entering working memory are processed, as well as organising the 

other two components: the visuospatial sketch pad and the phonological loop 

(Baddeley, 1992, 1996; Baddeley & Hitch, 1974). These two components are also 

known as the slave systems of the central executive. 

The two subsidiary (slave) components are distinguishable by the different types 

of information they store and process (Baddeley & Hitch, 1974, Baddeley, 2000). The 

visuospatial sketch pad stores and maintains visual imageries, such as shapes and colours. 

It is also able to perform spatial comparisons or movements of visual representations and 

mentally rotate images. The phonological loop is the verbal analog to the visuospatial 

sketch pad. Its function is to retain verbal and acoustic information. It is assumed to have 

a temporal phonological store that is able to hold the information, which will decay after 

few seconds unless the information is refreshed through articulatory rehearsal. Baddeley 

Central 

executive Phonological 

loop 

Visuospatial 

sketch pad 
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(1996, 2007) asserted that the phonological loop has evolved during language 

comprehension through the process of rehearsal and response production.  

Building on his initial model, Baddeley (2000) later revised the model by 

adding an episodic buffer (see Figure 5).  

 

Figure 5. The revised model of the working memory system proposed by 

Baddeley (2000, p. 421). 

The unshaded areas represent fluid systems that have the capacity for attention 

and temporary storage and are unchanged by learning. The shaded areas represent 

„crystallized‟ cognitive systems that are capable of holding information or 

knowledge. 
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The episodic buffer is assumed to have a limited capacity when accumulating 

information from the slave systems. Specifically, the episodic buffer was proposed as 

a subsystem that integrates information from both slave systems into unified chunks 

forming coherent episodes. Baddeley further explained that the integrating process 

involves an interface between episodic long-term memory and the stimuli stored in 

the slave systems (Baddeley, 2000, 2001). Episodic knowledge (i.e., the recollection 

of individual events) in long term memory is retrieved by the central executive into 

the episodic buffer to assist the integration of information in order to represent the 

information in terms of space and time (Baddeley, 2001). 

Moreover, Baddeley (1996) contended that the central executive plays the 

major role in working memory because it has a function equivalent to a supervisory 

attention system that plays an important role in managing attention resources for the 

subsidiary systems. Specifically, the central executive has control over the episodic 

buffer enabling it to integrate new knowledge from the visuaospatial sketchpad and 

the phonological loop, with information stored in long term memory (Baddeley, 

2000, 2001).  

It has been highlighted that sensory memory and working memory are 

restricted in capacity. In contrast, long-term memory has an extremely large capacity, 

and exerts considerable influence over working memory. In the following section 

long-term memory and how knowledge is organised are discussed. 
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Long term memory 

Long term memory is considered to be a permanent store of information 

accumulated and transformed over human lives (R. C. Atkinson & Shiffrin, 1968; 

Sweller et al., 2011). It provides a permanent storage repository in our cognitive 

architecture and has a virtually unlimited capacity. It is argued that long-term 

memory is central to human cognition, since the purpose of learning is to change the 

knowledge structures contained within long-term memory (see Sweller et al., 2011).  

Initial evidence that long term memory has an unlimited storage capacity came 

from De Groot (1978) in his classic study on chess. The study was completed 

between 1938 and 1943, and was originally designed to analyse how chess players 

think when making their moves. The participants consisted of well-known chess 

grandmasters, masters, champions and less-skilled players, who were asked to think 

aloud when deciding what moves to make. De Groot predicted that grandmasters 

would use sophisticated strategies and tactics, but found little difference between the 

methods employed by chess players with different levels of expertise.  

De Groot also asked participants to look at specific chess configurations on a 

board for a short time interval (10 to 15 seconds), and then asked them to reconstruct 

the configurations, after the board was withdrawn from sight. De Groot found that 

grandmasters were able to efficiently grasp the configuration in less time (about five 

seconds), more accurately reconstruct it, and could then indicate the best associated 

next move, compared to the less-skilled players. He further found that grandmasters 
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could visualise chess configurations as meaningful structures, which enabled them to 

understand the underlying concepts involved. They possessed a large knowledge base 

of chess positions and appropriate moves that gave them a distinct advantage over 

less experienced chess players. De Groot suggested that the vast amount of chess 

structures remembered by grandmasters were a result of many years of experience. 

De Groot‟s study greatly influenced the study of human cognition because it 

illustrated, for the first time, that expertise in chess was a result of knowledge stored 

in long-term memory, rather than superior on-the-spot problem solving and planning. 

Chase and Simon (1973) replicated de Groot‟s finding that master chess players 

were superior to novel players when asked to memorise real chess configurations. 

However, when shown chessboards where the pieces were randomly placed, experts 

had no better recall than novices. This last result demonstrated that chess experts do 

not have a greater working memory capacity than novices as such. When trying to 

remember random configurations, all players were constrained by Miller‟s restricted 

capacity findings. It was only when the chess pieces created a meaningful pattern that 

experts had better recall as a result of a superior long-term memory. 

Further research by Simon and Gilmartin (1973) using a computer program to 

simulate the chess position reconstruction process, suggested that master players have 

acquired hundreds of thousands of chess configurations in their long term memory 

which enables them to create meaningful chunks for chess positions. These chunks 
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not only allow superior short-term recall of chess games, but also enable them to 

recognise a game situation, and the best way to proceed in the game. 

Following research into chess, studies in other domains, such as in electronics 

(Egan & Schwartz, 1979), physics (Chi, Feltovich, & Glaser, 1981; Chi, Glaser, & 

Rees, 1982), and mathematics (Sweller & Cooper, 1985), have provided more 

understanding on how expert learners have acquired unlimited amounts of 

knowledge. Consistently it has been shown that knowledge stored in long term 

memory is the major difference between experts and novices in any given domain 

(see Ericsson, Charness, Feltovich, & Hoffman, 2006). Not only do experts have 

more knowledge than novices, but also they possess knowledge that is more 

connected and sophisticated (see Section 1.3 for more detail). The following section 

discusses schema theory, which provides a well-researched explanation of how 

knowledge is constructed and structured in long term memory, and how it becomes 

automated. 

 

Schema Theory 

Schema theory is used to explain how knowledge is stored in long term 

memory (Sweller et al., 1998). A schema is an internal mental representation in 

human cognition, and its definition emerged from Bartlett‟s study of thinking 

processes as well as Piaget‟s theory of cognitive development (Mayer, 1977). 
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Schema construction 

Bartlett’s study. Bartlett (1932) introduced the term schema as “an active 

organised setting” (p. 209) based on the accumulation of past experiences. In his 

groundbreaking study, Bartlett analysed the quality of information recall using 

several methods and materials, such as facial images, novel folk stories, picture 

writings, descriptive and argumentative prose passages.  

Concerning the highly influential folk story, The war of the ghosts (p. 65), he 

observed that subjects could not replicate the material literally (as it is). He found that 

there were tendencies to transform the material into a general nature, or the 

rationalisation of unfamiliar characters by changing them into more familiar 

characters. The British students in the study were unable to make sense of some 

aspects of the culturally different North-American folk story and therefore interpreted 

it in terms of their own culture. Hence it was concluded that human memory attempts 

to make meaning of perceived information by connecting it to something that has 

been acquired previously. Bartlett named this knowledge structure as a schema. The 

British students re-constructed the story in terms of their own culture-specific 

knowledge. Having perceived the information in a certain fashion, schematic 

knowledge highly influenced their responses. 

Piaget’s theory. While Bartlett‟s study shows that prior-schemas influence 

the construction of new knowledge, Piaget theorised how schemas (schemata) are 

constructed and re-constructed. According to Wadsworth (1978), Piaget defined a 
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schema as a structure of knowledge that acts as an active internal reorganisation of 

information. Piaget asserted that schemas must be constructed purposefully by 

linking actions on objects with one‟s own experiences of similar things, and therefore 

schema construction is an individual unique action (Wadsworth, 1978). 

Piaget‟s original studies investigated children‟s cognitive development using a 

clinical observation method (Mayer, 1977). Although the use of this method was 

criticised, Mayer argued that Piaget‟s theory has been very influential in the area of 

human cognition. A key aspect of the theory assumes that schemas evolve because 

humans have always learned from the environment in order to survive (Mayer, 1977).  

The construction of new schemas occurs in two ways: assimilation and 

accommodation (Mayer, 1977; Wadsworth, 1978). Assimilation occurs when new 

information, which is similar but not identical to the existing schematic knowledge, is 

integrated or incorporated into an existing schema. To illustrate this, students learn 

the concepts of square and rhombus by associating them with a known schema for a 

rectangle, which is a plane shape with two sets of parallel sides.  
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         Old schema ------------------- new schemata as a result of assimilation 

Figure 6. Assimilation of new schemata 

Accommodation occurs when changes in the existing schema are made in 

order to fit the new information. When a student is learning about the new concept of 

a square by looking at its similarities and differences with the existing concept of a 

rectangle, the central concept associated with a rectangle has to be restructured to 

accommodate a quadrilateral with the same length of sides.  

                            

 

Old schemata as a result of assimilation-- new schemata as a result of accommodation 

Figure 7. Accommodation of schemata 



25 

 

However, under most circumstances, assimilating new information and 

accommodating an old schema to fit a new schema causes cognitive disequilibrium. 

Cognitive disequilibrium leads to a search process of balancing cognitive structures 

which is called equilibration. An active equilibration process allows learners to 

continuously assimilate new information and accommodate old schemas until a better 

sense of understanding is obtained. Equilibration maintains the integration of new 

schemas and also the alteration of the older schema into a more organised 

representation (Mayer, 1977; Wadsworth, 1978). 

A key function of schemas is that they organise information stored in long-

term memory (Sweller et al., 2011; Sweller et al., 1998). A number of elements of 

information can be incorporated into a single schema. For example, four elements, 

floor, wall, roof and space, can be incorporated into a schema based on the concept of 

room. The schema has a meaningful interrelated structure linking the properties of the 

four elements and how they fit together and interact. Furthermore, the element floor 

can consist of sub-elements such as foundation, base, flat, tile, carpet, rectangular 

shape, ground, and so forth. This example illustrates how schemas consist of 

connected information, using various levels of information. Schemas can be grouped 

together to form broader categories. For example, room can be considered a sub-

category of a house schema. 

Central to cognitive load theory is the use of schemas to help reducing 

working memory load (Sweller et al., 2011; Sweller et al., 1998). Because schemas 
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consist of connected elements, information can be retrieved from long term memory 

as chunked information. For example, consider the English alphabet. When very 

familiar with it, students can use the alphabet as a single piece of information, rather 

than 26 individual elements. Consequently, if asked to remember the alphabet and 

complete other tasks it may be easy to complete these tasks, as only one other piece 

of information has to be remembered simultaneously, in addition to completing the 

tasks. The same argument applies when constructing new schemas; if relevant 

chunked information in the form of schemas can be accessed from long term 

memory, more available resources are available in working memory to process the 

information required to acquire new knowledge.  

Schema automation 

Schematic knowledge can help overcome the limitations of a very limited 

human working memory as described above. Another advantage occurs when 

schematic knowledge is automated. Schema automation occurs when a schema can be 

activated effortlessly (Schneider & Shiffrin, 1977; Shiffrin & Schneider, 1977). 

Being able to access schematic knowledge with little effort again has little impact on 

working memory load, and therefore allows more cognitive resources to be used for 

schema construction (Sweller et al., 2011; Sweller et al., 1998). It is found that 

schema automation occurs gradually and only with extensive use of the schema 

(Cooper & Sweller, 1987; Ericsson, Krampe, & Tesch-Romer, 1993).  
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The following example illustrates this point. The first time we learn 

handwriting, we have to consciously pay attention to how to hold a pencil when 

writing basic text like the alphabet. Focusing on the actual writing can interfere with 

learning the alphabet. However, after a period of practice, we are able to write more 

complicated passages without paying much attention to how we hold the pencil, 

because handwriting skills have become automated. Similarly, when we learn to read, 

we need to consciously recognise letters and pronounce every syllable. However after 

many years of reading, we can read familiar text without effort as reading has become 

automated. Hence working memory resources can be directed to understanding more 

complex text. In mathematics, the first time we learn simple addition, we have to 

consciously pay attention on numbers or maybe their representations. However, after 

some times of practice, we are able to do mental addition and hence we can do 

multiplication without paying too much attention on the simple addition anymore. 

Highly automated schemas are very desirable, but research has shown that 

extensive practice is required for knowledge and skills to become automated (see 

Ericsson et al., 2006). Recall, de Groot (1968) found that grandmasters spent many 

years of playing chess before they were able to efficiently recall chess configurations 

given a short exposure. Similarly, experts in physics had spent years building 

knowledge in their domain, enabling them to excel in physics problem solving (Chi et 

al., 1981; Chi et al., 1982). 
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Summary 

Early attempts to model our cognitive structures were based on the modal 

model (R. C. Atkinson & Shiffrin, 1968; Waugh & Norman, 1965). This model 

included three distinct memory systems: sensory memory, working memory and long 

term memory. Sensory memory is the bridge between our virtual system and the 

environment. Working memory is where conscious thought processes the meaning of 

information perceived and transferred by sensory memory. The Baddeley working 

memory model (Baddeley, 1992, 2000; Baddeley & Hitch, 1974), expanded upon the 

early models by arguing that working memory itself consists of a central executive 

and subsidiary components: the visuospatial sketch pad, the episodic buffer and the 

phonological loop. Each sub-system has its own function controlled by the central 

executive. Both sensory and working memory have severe limitations in capacity and 

duration, while long term memory can store unlimited amounts of knowledge. To 

explain how long term memory stores and uses knowledge, schema theory (Bartlett, 

1932; De Groot, 1978) has been highly influential. A schema is a knowledge 

structure that combines elements of information into the category in which it will be 

used (Sweller et al., 1998).  

Schemas, stored in long term memory, are retrieved into working memory, 

and used to process new information and subsequently help develop new schematic 

knowledge. Schema construction is managed by working memory, and because of its 

limited capacity, automated schemas are very helpful and necessary (Sweller et al., 
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1998). Schema automation allows cognitive processes to occur effortlessly in 

working memory with little demands on cognitive load, thus making more cognitive 

resources available for more complex cognitive tasks, such as problem solving. 
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Chapter III    Experts and Novices’ Cognition 

 

The previous chapter covered human cognition and specifically highlighted 

how the modal model can describe how knowledge is acquired, how schema theory 

can explain the way knowledge is stored and organised in long term memory, as well 

as how schema automation can reduce cognitive load in working memory. It has been 

pointed out that the study of human cognition was a major impetus in the study of 

expert cognition (Feltovich, Pritetula, & Ericsson, 2006).  

Much research in the field of expertise has been conducted by two general 

approaches (Chi, 2006): (1) studying how a highly distinctive expert performs in their 

domain of expertise, or (2) comparing experts to novices. Chi concluded that studies 

on expertise have not only identified ways in which experts excel, but also ways in 

which they do not. Building on empirical evidence, generalisable characteristics of 

experts have been developed (Feltovich et al., 2006; Glaser & Chi, 1988), and these 

are discussed in the following section. In recent developments, the study of expert 

cognition and characteristics of expertise have influenced educational goals, 

particularly in instructional designs. It is argued that the aim of classroom instruction 

has shifted from a focus on behavioural changes to the development of expertise 

(Amirault & Branson, 2006; Feltovich et al., 2006).  
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Generalisable characteristics of expertise 

Feltovich et al. (2006) pointed out that the study of expertise has progressed 

since the early work of Chi and colleagues on expertise characteristics (Glaser & Chi, 

1988), covering much wider contexts, many of which are reported in the handbook 

entitled Expertise and Expert Performance edited by Ericsson et al. (2006). Feltovich 

et al. (2006, pp. 47-60) identified nine characteristics of expertise, which are briefly 

summarised below. 

1. Expertise is limited in its scope and elite performance does not 

transfer. Feltovich et al. found that there was strong evidence in support of the 

finding that experts excel in their own domain. In addition when experts have reached 

an elite level, it is rare for an individual to have a second domain area of expertise. 

High levels of proficiency in one domain do not transfer to high levels of proficiency 

in a second domain, even when there may be similarities between domains. 

2. Knowledge and content matter are important to expertise. This 

characteristic elaborates the first characteristic above. Feltovich et al. found that 

experts rely heavily on their domain specific skills and knowledge to produce a 

superior performance in various tasks in their domain of expertise. It was found that 

their specific expertise influenced basic cognitive abilities, such as reasoning and 

encoding. Experts also acquire rich knowledge in a specific domain and continuously 

develop their level of expertise. As a consequence, their increasing level of expertise 

gradually turns them into unique individuals. 
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3. Expertise involves larger and more integrated cognitive units. Feltovich 

et al. also asserted that there was strong evidence in support of the notion that experts 

are able to perceive larger amounts of information in working memory because they 

have acquired superiority in chunking large amounts of information with their 

increased experience. They become experts because they have superior encoding and 

storage skills that allow them to build well organised knowledge in long term 

memory. This superiority is acquired through extensive practice.  

4. Expertise involves functional and abstracted representations of 

presented information. This means that experts are able to see and represent 

information at a deeper level using specific principles or rules associated with the 

problem. Feltovich et al. added that experts can develop more complex (functional 

and abstracted) representations of information by immediate and integrated access to 

knowledge relevant to task demands because they have acquired more organised 

retrieval skills.  

5. Expertise involves automated basic strokes. In addition to their effective 

encoding, storage and retrieval skills, experts have highly automated skills. Feltovich 

et al. pointed out that this automation results from consistent practice on tasks 

specified in the domain of expertise over a very long period. It was also found that 

automation plays a great role not only in accomplishing more complex skills but also 

in controlling the usability of available knowledge.  



33 

 

6. Expertise involves selective access of relevant information. Feltovich et 

al. found that experts are better able to pay attention to relevant information by using 

discriminating cues. They are able to utilise functional and abstracted models to 

categorise information and transfer their knowledge of past events to new ones. 

Moreover, they are able to recognise the particular information in a task and 

adequately use their knowledge to perform that task. 

7. Expertise involves reflection. Experts have a good understanding of their 

own cognitive processes, indicating metacognitive skills. Feltovich et al. noted that 

research consistently showed that they not only have the capability of planning a 

solution process, but are able to modify and adjust their plans during the problem 

solving process. Expert monitoring behaviour has three functions. Firstly, it provides 

efficient and rapid reactions to situation changes. Experts are able to back-track or 

start again when their reasoning needs to be modified. Secondly, experts can 

simultaneously improve and refine their skills. Thirdly, experts can adjust their 

planning to meet the demands of novel situations. When experts fail they can explain 

why such procedures were inapplicable, whereas novices cannot. 

8. Expertise is an adaptation. Experts have the ability to adapt to cognitive 

restrictions, such as limitations posed by attention resources and working memory 

when novel or simultaneous information is present, and an impaired access to long 

term memory (e.g., forgetting an important aspect). This adaptation consequently 

encourages them to generate effective applications to task demands. 
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9. Simple experience is not sufficient for the development of expertise. 

Supported by the study of deliberate practice by Ericsson and colleagues (e.g., 

Ericsson et al., 1993), Feltovich et al. concluded that to acquire the above 

characteristics of expertise, a learner needs to practice consciously in a working 

environment that is designed to achieve performance superiority, and perform that 

practice over a substantial period of time. As Ericsson (e.g., Ericsson et al., 1993), has 

observed, in most domains it takes 10 years of deliberate practice to achieve expert 

status.  

 

Difference in problem solving strategies between experts and novices 

As described above, much is known about the characteristics of experts. Of 

particular importance to this book, and cognitive load theory in general, is the 

difference between experts and novices when solving problems. This section 

discusses problem solving and the strategies used by experts and novices. 

Problem solving.  

Problem solving is an activity to find a solution to a given problem that cannot 

be solved immediately (Kantowski, 1977). In other words, no automatic solution is 

available to the problem solver. Sweller (1999, p. 3) gives the following example: 

“Suppose five days after the day before yesterday is Friday. What day of the week is 

tomorrow?” This specific problem seems to be familiar to us, yet the solution may 
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not be available immediately. According to the prior-knowledge of the problem 

solver, solutions may vary from algebraic equations to trial-and-error.  

According to Kantowski (1977) problem solving consists of a set of activities 

(the process) and actual solutions (the product). Specifically, Anderson (1993) 

summarised that problem solving creates a problem space consisting of a number of 

states dependent upon the rules of the problem. Problem solving attempts are made to 

find connections between the facts or rules within the problem space as well as to 

create a path between the given state and the goal state.  

Problem solving is common in our everyday life, and so it is essential to be 

able to solve problems. As argued by Schmidt, Loyens, Van Gog, and Paas (2007) 

problem solving is an important process in learning since it facilitates reasoning and 

the ability to explain observable facts and occurrences. However, to solve problems 

effectively depends on the level of expertise of the problem solver, since relevant 

schemas in the domain are essential to recognise and solve problems. As was 

discussed above, experts possess well-developed automated schemas, which enable 

them to categorise a problem based on its deep structure and solve it effectively (Chi 

et al., 1982, Feltovich et al., 2006). In contrast, novices or less-knowledgeable 

learners in a domain do not have sufficient schemas and categorise problems 

according to a more superficial structure, resulting in inefficient solutions or no 

solution at all. 
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Problem solving skills 

Kantowski (1977) stated that problem solving has two aspects: (1) the 

process: a set of activities, and (2) the product: the actual solution. It is noted that an 

ill-defined problem has multiple acceptable products and many possible ways for 

reaching them, while a well-defined problem has only one possible product and one 

agreed process for reaching it (Brunning et al., 2004).  

Brunning et al. (2004) assumed that successful problem solvers engage five 

component skills: (1) identifying the problem, (2) representing the problem, (3) 

selecting an appropriate strategy, (4) implementing the strategy, and (5) evaluating 

solutions. These skills are heavily constrained by domain specific knowledge 

(secondary knowledge) and general problem solving strategies (biologically primary 

knowledge). Identifying the problem can be the first challenging part in solving a 

problem, since it requires creativity, persistence and willingness to think carefully 

about the problem over sufficient time. The degree to which the problem solver 

acquires domain specific prior knowledge can determine successful problem finding 

since prior knowledge facilitates perception and elaboration of new information. For 

instance, mathematical experts may be less able to identify a medical problem 

because they may not have sufficient prior knowledge that allows them to identify 

medical problems, and on the other hand, a doctor can identify medical problems but 

may not be able to solve some mathematical problems as mathematicians do.  
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After problem finding, problem solvers may need to represent the problem 

externally as the amount of information needed to deal with complex problems is 

constrained by working memory load and so too difficult to solve mentally. In order 

to find a strategy path, problem solvers should represent the more important 

components of the problem space: goal state (what we want to accomplish), initial 

state (what is the given information), operators (objects or concepts that can be used 

to reach the goal) and constraints on operators (rules or procedures to be used by the 

operator). It has been argued that the size of a problem space depends on the way the 

problem is understood or the level of expertise (Bransford, Brown, & Cocking, 2005). 

More knowledgeable problem solvers tend to categorise the problem space based on 

principles or solution strategies that are relevant to solve the problem, because they 

have sufficient knowledge and experience of it. However, less knowledgeable 

problem solvers rely on the surface structure such as the objects that appear in the 

problem. Evidence for this hypothesis was shown in the first experiment of Sweller 

and Cooper (1985) that investigated the algebraic problem representation skills of 

three different age levels using Einstellung and memory tests. Einstellung is 

described as an occurrence of inappropriate use of a previously acquired schema 

because a problem is incorrectly perceived as belonging to a familiar category that 

requires the use of that particular schema (Sweller & Cooper, 1985). The results 

suggested that the more experienced students had the better cognitive representation, 

indicated by a superior memory of actual algebraic equations and an increased 
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resistance to Einstellung effects in operating on equations, than the less experienced 

students. As a consequence, providing more practice on a particular problem type as 

well as on analysing different problems by less experienced problem solvers can 

improve their ability in categorising the problem space.  

 

Thirdly, problem solving requires selecting an appropriate strategy: that can 

be a highly structured strategy, namely, an algorithm, or a general problem solving 

strategy (Geary, 2007), which is broad knowledge that is not connected to a specific 

domain but generally needed for completing problem solving tasks, for example 

vocabulary to express ideas, general search information skills or metacognitive 

knowledge to carry out problem solving activities (Brunning et al, 2004). The 

problem of finding the volume of a geometrical shape which can be solved using the 

volume formula is an example of the use of an algorithm based strategy. Expert 

problem solvers in the domain, not surprisingly, are able to retrieve or to select the 

appropriate algorithm because of their proficient schematic knowledge or their large 

experience of planning strategies. However, using an algorithm based strategy is 

impossible for novice problem solvers because either the algorithm does not exist in 

their long term memory or they lack expertise in using it. Subsequently, novice 

problem solvers will use a general problem solving strategy that is traditionally called 

a heuristic or “rule of thumb”, trial and error, or means ends analysis. Brunning et al 

(2004) indicated that people who deal with a very unfamiliar problem may not have 
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sufficient information or experience to derive a strategic solution plan. They might 

use trial and error at the start and then, after reaching some preliminary conclusion to 

the problem, turn to a more efficient strategy. This strategy may work to obtain a 

solution but such a strategy is considered the least efficient method of problem 

solving because it does not direct the problem solvers‟ attention to acquire practical 

schemas in their long term memory (Sweller, 1999). 

 

Schoenfeld (1980) defined a heuristic strategy as: “a general suggestion or 

technique which helps problem-solvers to understand or to solve a problem” (p. 795). 

Heuristic strategies include strategies used by expert problem solvers that are stated 

as short explanations or clues. Heuristic strategies use working backwards, or a 

looking back strategy to search for a solution (Kantowski, 1977). Schoenfeld (1980) 

provided an example of the use of a heuristic strategy in mathematics as follows.  

 

“To solve a complicated problem, it often helps to examine and solve a 

simpler analogous problem. Then exploit your solution.” 

 

Problem 5: Let a, b, and c be positive real numbers. Show that not all three of 

the terms a(1 – b), b(1 – c), and c(1 – a) can exceed ¼.  

 

(Schoenfeld, 1980, p. 795) 

 

A heuristic method applied to the above examples shows that the problems 

can be solved by examining and applying a simpler analogous problem to the given 
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problem. Arguably, the heuristic method may be a source of extraneous cognitive 

load. In problem 5, an analogous two-variable formation may be used and then 

expanded to three variables to exploit the answer. This problem seems difficult to 

solve, indeed, the author stated that an easier way to solve this problem type using 

analogous problems had not been found. Nonetheless, the author argued strongly that 

using a heuristic strategy with an example of how that strategy works and training to 

work with it will facilitate problem solvers, without explicitly explaining how 

detailed the heuristic strategy is.  

 

The heuristic method imposes a heavy working memory load because, rather 

than facilitating schema acquisition and automation, a heuristic strategy suggests 

learners create sub goals or analogous problems that will result in slower learning and 

the hazard of misconception.  

 

It has been indicated that a heuristic strategy can be applied differently to 

different problems and to do so, one needs to retrieve other schemas in order to find 

an analogous problem and then apply means ends analysis or a trial and error 

approach. Prior knowledge possessed by problem solvers is the reason for this. In 

addition, it can also be argued that a heuristic method does not always guarantee a 

solution and even makes problem solving more difficult. Notwithstanding the fact 

that a heuristic method may provide a stepping stone, it is obvious that a heuristic 
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strategy is inefficient for learning novel problem solving because it imposes a high 

cognitive load.  

 

The fourth problem solving skill, implementing the strategy, largely depends 

on the result of identifying and representing the problem, and selecting the 

appropriate solution strategy. Notably, expert and novice problem solvers have a clear 

difference in their implementing a solution strategy since they have a contrasting 

schema structure. The schematic structure of this knowledge in long term memory 

largely determines how expert problem solvers derive and implement a solution 

strategy (Sweller, 1999; Sweller et al., 1998). Expert problem solvers posses a well 

developed declarative knowledge base about how a problem is structured, procedural 

knowledge about how to perform a problem solution and conditional knowledge 

about when and why to use declarative and procedural knowledge. This knowledge is 

developed by deliberate practice (Erricson, 2003) and so the more experience gained, 

the better the problem solving strategy. In contrast, novice problem solvers posses 

either less prior knowledge required to identify and represent the problem or less 

experience in selecting a strategy to solve domain specific problems. Furthermore, 

Sweller (1999) and Sweller, et al. (1998) pointed out that less knowledgeable 

problem solvers coordinate the problem solution phase poorly, consider single 

solutions based on a noticeable problem space and reach conclusions that may be less 

transferable to another problems. 
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The fifth problem solving skill is evaluating the solution both in terms of the 

process and the product of problem solving (Brunning et al, 2004). Evaluation of the 

solution allows us to reflect more deeply on the process of problem solving and so 

understand the application of a specific strategy. Expert problem solvers are more 

likely to consider more solutions and carefully evaluate solutions before discarding 

them, unlike novice problem solvers (Brunning et al, 2004). Pawley, Ayres, Cooper 

& Sweller (2005) investigated the effect of checking instructions in translating a word 

problem into algebraic equations. In the experiment, Pawley, et al. explicitly 

instructed students to check whether the equation formed has the same meaning as the 

given word problem. The results suggested that checking instructions was beneficial 

for lower knowledge students but not for higher knowledge students. It was found 

that higher knowledge students were capable of completing the problem better 

without explicitly instructed to check. Similar to Brunning et al. (2004), Pawley et al. 

(2005) argued that checking instructions may be a redundant activity for more 

knowledgeable students because they already posses evaluation skills as part of their 

problem solving approach. 

The problem solving strategies of experts and novices.  

Experts are able to understand and categorise problems efficiently and use a 

forward moving strategy to solve them (Ayres & Sweller, 1990). For example, an 

expert mathematician can solve an arithmetic word problem by creating equations to 
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represent the problem mathematically, and then generate the appropriate equations to 

solve the unknown variables required. They have acquired sufficient schemas 

permitting them to effectively select the associated steps to move forward from the 

problem statement towards the problem goal.  

Novices or less-knowledgeable learners without schematic knowledge will 

more likely use a general problem solving strategy, such as means-ends analysis 

(Ayres & Sweller, 1990; Sweller, 1988). Using means ends analysis, problem solvers 

try to reduce the distance between the given information and the problem goal by 

creating sub-sub goals and then examining them individually to find the solution. The 

inefficiency of means ends analysis has been confirmed by several studies (Ayres & 

Sweller, 1990; Sweller, 1999; Sweller & Cooper, 1985).  

 

Ayres and Sweller (1990) investigated the effect of using means ends analysis 

during geometry problem solving. It was found that most errors occurred during the 

calculation of the sub-goal preceding the goal in either two or three step geometry 

problems. The authors stated that means ends analysis is often used not only when 

calculating the goal of the problem, but also in the sub goal prior to the goal. The use 

of means ends analysis might be beneficial for some problem learners when dealing 

with unfamiliar problems, because it can increase the chance of completing the goal 

of the problem, however, it does not necessarily facilitate learning. In addition, the 

difficulty level of the problem (or the intrinsic cognitive load) many contribute to the 
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use of means ends analysis. Ayres and Sweller, in their experiment, confirmed this 

fact and demonstrated that after the unfamiliar problems were altered to reduce the 

use of means ends analysis by constructing configurations that had a clear solution 

path thus encouraging a forward strategy, the calculation error location is random. 

This means that the use of means ends analysis can be minimised by tailoring the 

configuration of the problems. The authors concluded that the use of means ends 

analysis imposes a heavy cognitive load and can be minimised. 

The means ends analysis strategy creates sub-goals or analogous problems by 

breaking down a problem into smaller sub problems, and testing the effectiveness of 

each step (Ayres & Sweller, 1990). In other words, to search for a solution, problem 

solvers move backwards from the goal to the problem state, creating sub-goals to be 

found in the process. This strategy may result in a problem solution, but can create 

heavy demands on working memory and direct cognitive resources away from 

schema construction (Ayres & Sweller, 1990; Sweller et al., 2011; Sweller et al., 

1998). 

 

Figure 8. Steps of Means Ends Analysis 

Steps of Means Ends Analysis 

1. Looking at the initial problem state 

2. Looking at the current problem state 

3. Looking at the goal state 

4. Defining differences between these states 

5. Finding moves to reduce those differences 

6. Considering sub-goals that may lead to a 

solution 
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The following example of problem solution illustrates the use of means ends 

analysis strategy using a geometry problem: Finding a measure of an angle, which 

consists of eight steps of means ends analysis. It should be noted that this strategy is 

not effective and should only require two steps only to solve by applying satisfying 

knowledge if possessed by the problem solver. 

 

Step 1. Identify the goal : angle X
o
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Step 2. Found that X
o
 = Y

o
 

 

 

Step 3. Creating a sub-goal Y
o
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 Step 4. Found that Y
o
 + Z

o
 + 47

o
 = 180

o
 

 

Step 5. Create sub-goal Z
o 
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Step 6. Calculating angle Z
o
 

 

Step 7. Back to angle Y
o
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Step 8. Back to angle X
o
 

Figure 9. Eight steps of means-ends analysis for solving a geometry problem 

 

Summary 

One of the aims of learning mathematics is to master problem solving 

strategy; therefore it is crucial to understand the strategy of an expert problem solver 

in a specific domain of mathematics. Cognitive psychologists have attempted to study 

how learners can be an expert problem solver. Experts and novices in a specific 

domain are distinguished by differences in their schematic knowledge. Experts can 

categorise and formulate a solution to a problem based on its deep structure, and 

solve problems in a forward-working strategy. In contrast, novices can only 

categorise a problem based on its surface structure and most likely try to solve the 
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problem in a backwards-working strategy using means-ends analysis. As a 

consequence, if a learner aims to construct knowledge of how to solve problems like 

expert mathematicians, they should apply the strategies of problem solving used by 

the mathematics experts. In order to acquire strategies of problem solving used by the 

mathematics experts, the learner must possess schematic knowledge. The following 

chapters describe cognitive load theory and the generated effects which may explain 

how learners develop schematic knowledge effectively. 
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Chapter IV    Cognitive Load Theory 

 

Human cognitive architecture, discussed in Chapter II, informs us of the 

central components of human cognition, their nature when processing information 

and how expertise in a specific domain can be built. It also explains how knowledge 

is acquired and how problem solving skills are developed. Cognitive load theory 

argues that an understanding of human cognition provides a useful framework for 

designing effective learning environments (Sweller et al., 2011). 

Generally cognitive load theory is concerned with the limitations of working 

memory when learning novel information, and that the central role of learning is to 

facilitate the knowledge acquisition and automation of knowledge held in long term 

memory. Cognitive load theory emphasises that learning is reduced when the 

presentation of the to-be-learned material causes a cognitive overload.  

In more recent developments, Sweller has compared cognitive architecture to 

the theory of evolution by natural selection (Sweller, 2003, 2004). He asserts that the 

information processing system is not unique to human cognitive architecture. 

Biological evolution provides an example of a natural information processing system 

that has an identical basic framework to the information processing system in human 

cognitive architecture. Influential in this conceptualisation has been the work of 

Geary.  
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Geary separates knowledge into two categories (Geary, 1995, 2002, 2007, 

2008). The first is biologically primary knowledge, which consists of skills that 

humans have specifically evolved to acquire, and the second is biologically secondary 

knowledge, which consists of specific cultural skills that humans need to acquire. 

This categorisation suggests that instructional procedures should also be constructed 

depending on which knowledge is to be acquired. According to these recent 

theoretical developments, Sweller (2003, 2004) reconceptualised cognitive load 

theory into five basic principles which reflect the core characteristics of both human 

cognition and biological evolution.  

This chapter is divided into two sections. The first section discusses the 

framework of cognitive load theory from an evolutionary education perspective. It 

encompasses the distinction between biologically primary and secondary knowledge 

and Sweller‟s five principles of cognitive load theory. The second section examines 

the sources of cognitive load, and describes a number of strategies that reduce 

cognitive load.  

 

Human Cognitive Architecture in Evolutionary Perspective 

Biologically Primary and Secondary Knowledge 

Geary argues that different cognitive processes occur when dealing with 

biologically primary knowledge and biologically secondary knowledge as a 
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consequence of the evolution of human cognitive architecture (Geary, 1995, 2002, 

2007, 2008). He assumes that cognition has evolved as a function of adaptation, 

reproduction and survival, and is influenced by biological and cultural demands.  

Geary has proposed a detailed distinction between biologically primary 

knowledge and biologically secondary knowledge, which can be clearly contrasted by 

how they are differently acquired. It is argued that the human brain evolved over 

many generations to acquire biologically primary knowledge; that is, information 

required to survive in life, such as finding a path from one place to another, speaking 

to others, understanding facial expression, negotiating, making decisions, and 

listening to voices. This knowledge has grown as a tool to survive in everyday life. 

However, human cognition has also evolved to assimilate novel knowledge 

considered to be biologically secondary knowledge. This knowledge is culturally 

built and consists of the information needed for success in modern society, such as 

driving a car, writing a book, speaking a second language, baking a cake, playing a 

game, or solving mathematical problems. This knowledge, which is very recent 

compared to primary knowledge, has only developed to fulfil the cultural needs 

formed by society. 

Biologically primary knowledge may be considered general knowledge 

because it is applicable across domains. However, biologically secondary knowledge 

is domain specific. For example, the knowledge of basic algebraic equations has been 

acquired to solve various problems in the domain of algebra, but cannot be 
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guaranteed to solve other problems in other domains. However, a heuristic problem 

solving strategy such as means-ends analysis (discussed briefly in Chapter III) is 

considered as biologically primary knowledge. It is a primary skill that can be 

commonly applied to many problem solving situations, regardless of the domain, 

when the required secondary skill is not available (see Youssef, Ayres, & Sweller, 

2012), even though it may not successfully solve the problem. 

In terms of cognitive effort, biologically primary knowledge is acquired 

easily, rapidly, automatically or unconsciously by immersion into a functioning 

society (e.g., family, community, social group). In contrast, biologically secondary 

knowledge requires conscious cognitive effort, and is usually acquired through formal 

educational and professional organisations. 

Learning to listen to and read our native language provides an example of 

primary and secondary skills respectively. Our skill to listening is most likely 

acquired unconsciously despite being comprised of various sound recognition skills. 

We may learn the sound of soft, charming, strong, intimidating or fearful voices 

through our daily life; and we have accumulated them rapidly, yet effortlessly, since 

we are able to hear. Interestingly, this skill grows without explicit instruction because 

we automatically learn to listen as our life is surrounded by sounds and voices. There 

are biological and cultural demands influencing our ability to understand voices. On 

the other hand, we need to deliberately acquire skills to read the alphabet simply 

because it is a fairly recent addition to society, although very important, as Geary 
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(1995) notes. Without direct instruction for acquiring knowledge of reading, failure 

will most certainly occur. In addition, the learning process is conscious and demands 

cognitive effort. 

Sweller et al. (2011) argue that both knowledge categories are learnable 

because human cognition evolves to construct knowledge. However, biologically 

primary knowledge cannot be explicitly taught because human cognition has evolved 

to acquire this knowledge automatically. On the contrary, biologically secondary 

knowledge is teachable, and should be taught using direct, explicit instruction 

because this knowledge is not acquired naturally (Geary, 1995). Lastly, it is important 

to note that biologically primary and secondary knowledge requires different contexts 

for their acquisition. Primary skills can be learned in the natural environment, but 

secondary skills need to be learned in well-organised environments, such as schools.  

Because of the critical differences between primary and secondary 

knowledge, cognitive load theory is mostly concerned with instructional development 

for the acquisition of biologically secondary knowledge rather than biologically 

primary knowledge (Sweller et al., 2011).  

The following section discusses five principles linking human cognitive 

architecture and biological evolution. Using the analogy of human cognition as 

biological evolution has provided cognitive load theory a framework for analysing the 

efficiency of instructional designs as part of natural occurrence. (Sweller, 2003, 2004; 

Sweller et al., 2011; Sweller & Sweller, 2006). These five principles are: (1) the 
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information store principle, (2) the borrowing and recognising principle, (3) the 

randomness as genesis principle, (4) the narrow limits of change principle, and (5) the 

environmental organising and linking principle.  

 

Basic Principles of the Information Processing System 

An information processing system requires at least four defining 

characteristics to be successful (Sweller et al., 2011). Firstly, it should be creative, in 

that it is able to generate novel information to overcome the complexity of 

information in the environment. Secondly, the effectiveness of created novel 

information needs to be tested and effective information retained and subsequently 

used. Thirdly, stored information can be used to direct the activity of the system. 

Lastly, effective information can be transferred across space and time.  

Both human cognition and biological evolution are examples of sophisticated 

natural information processing systems and can be characterised as successful 

information processors (Sweller et al., 2011). Both consist of a set of natural entities 

that function to organise and process information. The following table (Table 1) 

describes aspects of human cognition that are comparable to aspects of biological 

evolution and their function. 

  



57 

 

Table 1. Natural information processing system principles (Adapted from 

Sweller&Sweller, 2006, p. 436) 

 Principles Cognitive case Evolutionary 

case 

Function 

1 Information store 

principle 

Long term 

memory 

Genome Store information 

for indefinite 

periods 

2 Borrowing and 

reorganizing 

principle 

Transfer 

information to 

long term memory 

Transfer 

information to a 

genome 

Permit the rapid 

building of an 

information store 

3 Randomness as 

genesis principle 

Create novel ideas Create novel 

genetic codes 

Create novel 

information 

4 Narrow limit of 

change principle 

Working memory Epigenetic system 

handling 

environmental 

information 

Input 

environmental 

information to the 

information store 

5 Environmental 

organizing and 

linking principle 

Long term 

working memory 

Epigenetic system 

handling genetic 

information 

Use information 

stored in the 

information store 

 

First principle: The information store principle 

This principle states that all natural information processing systems must have 

a central store of information to accommodate the huge and complex variations of 

information available in the natural environment in which the system functions 

(Sweller & Sweller, 2006). Long term memory and the human genome provide an 

information store in human cognition and biological evolution systems respectively. 

Both have an unlimited capacity. 
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In the biological system, Sweller and Sweller (2006) maintained that a 

genome stores a large amount of genetic-based information and governs biological 

activity. Additionally, the amount of information in a genome must be large in order 

to survive since it functions in an environment with a very wide range of information.  

In human cognitive architecture, long term memory stores a huge amount of 

information and similar to a genome, the organised information in long term memory 

controls the activity of human cognition. As discussed in Chapter 2, the pioneering 

studies of de Groot (1978), and Chase and Simon (1973), demonstrated extremely the 

large capacity of long-term memory.  

 

Second principle: The borrowing and reorganising principle 

This principle affirms the manner in which information is obtained and 

amassed into an information store (Sweller & Sweller, 2006). According to Sweller, 

biological information is acquired by a genome via asexual or sexual reproduction. 

During asexual reproduction, information in a genome is copied and repeatedly 

passed to its offspring. During this reproduction, genetic information in the parent 

cell is exactly copied into the new cells. During sexual reproduction, an equal amount 

of genetic information is borrowed from two sexually different genomes, and then 

reorganised in such a way that results in a new unique genome.  

Information acquisition in human cognition is considered identical to the 

reproduction mechanisms in the genome (Sweller & Sweller, 2006). Similar to 
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asexual reproduction, almost all of the secondary knowledge stored in long term 

memory is a result of borrowing the secondary knowledge from the long term 

memory of others. Repeatedly this acquired knowledge can be transmitted to others. 

Sweller argues that this mechanism is supported by primary knowledge, such as our 

skills of communicating with other people by listening to explanations, reading 

printed information or imitation.  

Moreover, Sweller suggests that human cognition rarely imitates others 

exactly, because the transmitted information will most likely be reconstructed to fit 

the information store. The schema theory, discussed in Chapter 2, provides evidence 

that borrowed information is reorganised by the Piagetian processes of assimilation, 

accommodation and equilibration in order to construct a better representation of 

knowledge in long term memory.  

 

Third principle: The randomness as genesis principle 

The borrowing and reorganising principle above demonstrates a method of 

acquiring and reconstructing information from others. The information is new to the 

borrower (learner) but old to the lender (teacher, peer and so forth), but does not 

explain how totally novel information is initially created and retained in the 

information store. The randomness as genesis principle describes how new 

information is initially created through a random generation and test of effectiveness 

procedure.  
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Sweller and Sweller (2006) point out that mutation is a mechanism used by 

natural systems to generate new variations of genetic material in genomes to increase 

their chance of survival. Further, Sweller et al. (2011) argue that although random 

mutation is the source of all variation and novelty in biology, without tests of 

effectiveness, mutations are worthless. Only those that are effective for survival and 

reproduction are retained in the genome. Drawing parallels with biological evolution, 

it can be proposed that human cognition initially creates new information using 

random generation and effectiveness test procedures (Sweller & Sweller, 2006).  

Evidence for the random generation and test strategy is found in the use of 

general problem solving strategies. As indicated in Chapter 2, when humans are 

presented novel tasks to solve, in the absence of relevant prior knowledge they rely 

on a general problem solving strategy, such as means-ends analysis. New moves can 

be created using such strategies, although most cause dead-ends because they are 

applied without a sufficient knowledge base. However, if a successful move is 

acquired, often after many generations and testing cycles, it will be stored in long 

term memory as new knowledge, whereas failed moves are likely to be rejected and 

forgotten. Sweller et al. (2011) argue that the randomness as genesis principle 

underlies all human creativity. 

Fourth principle: The narrow limits of change principle 

 In a novel environment, the randomness as genesis principle through a 

random generation and test procedure allows the information system to generate all 
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possible combinations of information, and randomly and repeatedly, selects a 

combination to test its effectiveness until a successful new solution is found and new 

information acquired. The borrowing and reorganising principle also creates new 

information but as a result of the alteration of previously stored information (Sweller 

et al., 2011). Sweller and Sweller (2006) describe how the epigenetic system can 

facilitate or inhibit the occurrence of mutations in some parts of the genome 

determined by the condition of the environment. Consequently, large numbers of 

mutations do not occur simultaneously. 

In human cognition, Sweller and Sweller (2006) argue that working memory 

can be considered analogous to the epigenetic system in biological evolution. As 

highlighted in Chapter 2, working memory‟s central function is to process 

information, but it has a severely limited capacity and duration for processing 

simultaneous information (Cowan, 2000; Miller, 1956). Due to the random 

generation and test procedure, potentially many combinations of information 

elements might need to be considered. To keep such combinations manageable, the 

natural information processing system relies on a limited capacity working memory. 

The narrow limits of change principle provides an explanation of why evolution has 

led to a restricted working memory capacity. Without such limitations, it would be 

impossible to handle all the possible combinations generated by the randomness as 

genesis principle.  
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Fifth principle: The environment organising and linking principle 

According to Sweller et al. (2011) the previous four principles explain how a 

natural information processing system acquires information. The last principle 

explains how stored information is translated into activities and used in a specific 

environment. 

In biological evolution, the epigenetic system transfers genetic material from 

the genome in order to respond to changes in environment, as well as to guide the 

functioning of the organism in response to environmental input (Sweller & Sweller, 

2006).  

Analogous to the epigenetic case, the environment organising and linking 

principle permits working memory to obtain unlimited amounts of organised 

information from long term memory. It can be recalled from Chapter 2 that experts 

have a superior cognitive system because of their ability to retrieve lots of 

information from long term memory. In contrast to the limited processing of novel 

information, due to the generation and test strategy, working memory can process 

vast quantities of information if the organised knowledge is stored in long-term 

memory in the form of schemas. The demands of the environment provide the cue for 

the relevant information to be transferred to working memory. Prior to this activation, 

schematic knowledge lies dormant in long term memory. 
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It is this interaction between long term memory and working memory which 

underpins cognitive load theory. Working memory creates the vital link between the 

environment and long-term memory. 

 

Cognitive Load 

It has been discussed that working memory can only manage a limited amount 

of novel information and as a consequence of this limit, knowledge acquisition is 

very much affected by the demands placed on working memory. Therefore, cognitive 

load theory is particularly focused on the level of cognitive load or mental activity 

imposed on working memory when dealing with novel information (Pass, Renkl, & 

Sweller, 2004; Sweller et al., 2011; Sweller et al., 1998). 

Cognitive load can be defined as the amount of information that working 

memory processes at any one time (Sweller, 1988). In order to explain instructional 

effectiveness, cognitive load theory has defined two categories of cognitive load 

according to their function: intrinsic and extraneous cognitive load (Sweller, 1994, 

2010). Both categories are determined by the level of element interactivity associated 

with the learning materials. Whereas intrinsic cognitive load is imposed by the 

element interactivity generated by the intrinsic structure of the learning material, the 

extraneous cognitive load is caused by the element interactivity generated by the 

presentation of the learning material. These two categories of cognitive load are 
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considered additive and the total determines the working memory resources required 

to process the information (Sweller et al., 2011; Sweller et al., 1998).  

 

Element interactivity 

Learning material consists of elements or chunks of elements of information 

that need to be processed in order for learning to occur. Elements may be considered 

single items of information, or simple information structures. Logical connections 

between elements determine the level of element interactivity of the learning material 

(Sweller & Chandler, 1994). In other words, elements are connected in such a way 

that they make a meaningful construction. Element interactivity refers to the extent to 

which elements interact with each other. 

If elements in learning material do not interact then these elements can be 

learned separately. Such material is considered as having zero or very low element 

interactivity. On the other hand, some materials are considered high in element 

interactivity because many elements interact and can only make logical meaning if 

processed together. It can be recalled that prior knowledge, stored in long term 

memory, can be used to chunk information together. As a consequence, prior 

knowledge will also determine how many interacting elements can be chunked 

together in working memory. Accordingly, some materials that are high in element 
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interactivity for beginner learners can be low in element interactivity for more 

advance learners. 

An example of low element interactivity can be illustrated when learning 

about various geometrical shapes. A student can learn about a square without 

necessarily learning about a triangle at the same time, because in this context, 

considerations of interactivity between the shapes are unnecessarily to understand the 

basic concepts connected to a square. Therefore, the properties of each shape (square 

and triangle) can be learned in isolation from each other. However, learning to 

calculate the volume of a prism, which may require knowledge about triangles and 

squares, can be considered high in element interactivity because there are many 

elements that need to be processed simultaneously, such as the property of the prism, 

the base area, the height, the volume formula as well as the unit used in the 

calculation. Without simultaneously attending to these elements, the task cannot be 

understood or completed correctly. However, attending to all these elements 

simultaneously will increase the demands on working memory. But as knowledge 

about prisms builds, interacting elements will become chunked into larger single 

elements and decrease the burden on working memory. Element interactivity can be 

used to describe understanding and task difficulty discussed next. 

Understanding. Sweller (1994) proposed that the term understanding is more 

suitably applied to learning about materials with high element interactivity. As high 

element interactivity materials involve interconnected elements, total understanding 
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will only be reached if the elements and the connections are considered at the same 

time. An understanding of high element interactivity material is achieved by making 

meaning of the connections between elements. As a consequence failure to connect 

some elements together will most likely cause a misunderstanding of the learning 

materials. It is argued that low element interactivity materials can be learned serially, 

because they do not necessarily relate to each other (Sweller et al., 1998). Any lack of 

knowledge about an element, or a failure to remember an element will not directly 

cause a misunderstanding of the other elements. 

Task difficulty. Additionally, Sweller and Chandler (1994) argued that 

element interactivity can be used to determine why some material can be difficult to 

learn. Tasks can be considered complex if they are high in element interactivity (see 

Sweller et al., 2011; Sweller & Chandler, 1994), and hence difficult to understand 

because of the number of interacting elements that need to be considered. 

Nevertheless, learning material consisting of low element interactivity can also be 

difficult to learn. For example, learning new vocabulary may be difficult to learn 

simply because of the total number of elements (new words) involved, even though 

the elements are independent of each other and may not interact. 
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Intrinsic cognitive load 

Intrinsic cognitive load refers to the intrinsic nature of the learning materials 

themselves (Sweller, 1994; Sweller & Chandler, 1994; Sweller et al., 1998). Material 

that is low in element interactivity imposes a low intrinsic cognitive load. Conversely, 

material that is high in element interactivity imposes a high intrinsic cognitive load. 

Intrinsic cognitive load is usually considered fixed, although it can be reduced 

by altering the complexity of the learning task, such as by reducing the number of 

interacting elements (Ayres, 2006; Pollock, Chandler, & Sweller, 2002). Without 

changing the complexity of the task, the intrinsic nature of the material or the element 

interactivity level, remains unchanged (Sweller & Chandler, 1994). However, as 

learners obtain prior knowledge about specific materials, schemas enable interacting 

elements to be chunked together as more advanced single elements, thus reducing 

element interactivity (Mayer & Moreno, 2003). Hence, for more advanced learners, 

specific materials may be considered quite simple; however, for less advanced 

learners the same materials may be considered complex and difficult to understand.  

 

Extraneous cognitive load 

The manner in which learned material is presented is the primary factor 

determining extraneous cognitive load (Sweller, 1994; Sweller & Chandler, 1994; 

Sweller et al., 1998). In contrast to intrinsic cognitive load, which is created by the 
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actual materials to-be-learned, extraneous cognitive load is created by the teacher or 

instructional designer. For example, if students are asked to learn about a science 

topic but are given poorly formatted diagrams and instructions, more processing may 

be required to understand the diagrams and explanations rather than focusing on the 

actual learning content. In this case, precious working memory resources are taken up 

by processing information that is irrelevant, or extraneous to learning. In such cases, 

the extraneous processing can directly interfere with learning.  

Sweller (2010) has argued that extraneous cognitive load can also be 

described in terms of element interactivity. Whereas element interactivity can indicate 

the intrinsic characteristics of the learning materials, element interactivity can also 

indicate the connectivity of elements presented by the instructional materials. If the 

instructional materials are low in elementary interactivity then learning is more likely 

to occur because fewer working memory resources are needed. On the other hand, if 

the instructional materials are high in element interactivity then learning will be more 

likely interfered with, as more working memory resources will be needed. Just as 

intrinsic load can have different levels of complexity, so can extraneous load. 

The majority of research on cognitive load theory has been to investigate 

strategies to decrease extraneous cognitive load (Mayer & Moreno, 2003; Sweller et 

al., 2011; Sweller et al., 1998). Effective instructional designers will try to lower 

extraneous cognitive load by modifying the presentation of learning materials 

accordingly. Cognitive load theory is particularly concerned with decreasing 
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extraneous cognitive load when the learning materials impose high intrinsic cognitive 

load, in order to promote learning.  

 

Germane cognitive load 

In addition to intrinsic and extraneous cognitive load, the working memory 

load actually invested in schema acquisition (learning) has been defined as the 

germane cognitive load. Originally conceptualised by Sweller et al. (1998) as an 

independent load, more recently germane load has been linked directly to intrinsic 

cognitive load. The working memory resources used to deal directly with the intrinsic 

cognitive load are now considered germane load as the cognitive process are directed 

towards a learning goal (Sweller, 2010; Sweller et al., 2011). Using working memory 

resources to deal with the extraneous load is not germane because schema acquisition 

is not directly facilitated. 

Germane cognitive load involves activities that are relevant to learning, such 

as eliciting self explanation (Paas & Van Gog, 2006). Paas & Van Gog (2006) 

suggested that requiring learners to generate explanations underlying the solution 

steps can stimulate them to invest working memory load for activities relevant to 

learning. 

It is worth noting that during the earlier development of cognitive load theory, 

the total cognitive load was calculated by adding the three loads together (Sweller et 
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al., 1998). This belief has been recently reformed, and now the total load is defined as 

the amount of cognitive load generated by the intrinsic and extraneous loads added 

together (Kalyuga, 2011; Sweller, 2010; Sweller et al., 2011). If the total cognitive 

load required is below the working memory limit, then the freed resources can be 

allocated to the germane cognitive load to help schema construction (Paas & Van 

Gog, 2006; Paas & van Merriënboer, 1994; Pass et al., 2004). 

 

Summary 

This chapter discussed the theoretical framework of cognitive load theory 

from the perspective of evolutionary educational psychology. It showed how human 

cognitive architecture underpins cognitive load theory and uses an analogy with 

natural information processing systems. Geary‟s knowledge categorisation into 

biologically primary and secondary knowledge was also discussed. This distinction is 

used to show which knowledge humans have evolved to acquire (primary), and which 

knowledge requires well-structured learning environments (secondary).  

Subsequently, five principles underlying cognitive load theory were 

described. Generally, these principles demonstrate: (1) why the cognitive processes 

require an unlimited long term memory; (2) how human cognition constructs 

schematic knowledge by borrowing from others; (3) how human cognition interacts 

with unfamiliar information and as a consequence constructs new knowledge; (4) 
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why working memory has a limited capacity; and (5) how human cognition interacts 

with the environment, and the importance of the interactions between working 

memory and long term memory.  

Two categories of cognitive load, intrinsic and extraneous, were also detailed 

using the concept of element interactivity. Germane cognitive load was also defined 

as the load directly invested in schema acquisition, and specifically linked to intrinsic 

cognitive load. Intrinsic and extraneous cognitive load are additive and form the total 

cognitive load. For the most effective learning to occur, the total cognitive load must 

not exceed the working memory capacity of the learner. While the intrinsic cognitive 

load is unchangeable due to its innate nature, unless the task is altered in some way, 

the extraneous cognitive load, which is generated by the instructional designer, must 

be kept at a low level in order to create the most effective learning environment.   
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Chapter V    Cognitive Load Effects 

 

Cognitive load theory was developed in the early 1980s and the initial 

research was focused on the search for alternatives to conventional problem solving 

strategies. Considerable evidence was collected which indicated that asking students 

to acquire knowledge through problem solving was ineffective due to a heavy 

reliance on means-ends analysis. As previously described, means-ends analysis is a 

general problem solving strategy that is used when there is lack of prior knowledge. 

However, means-ends analysis creates extraneous cognitive load and thus inhibits 

learning. This chapter reports on the cognitive load theory research that has 

investigated the different types of extraneous load and the strategies used to reduce its 

impact. 

 

How Means-Ends Analysis Increases Extraneous Cognitive Load 

Means-ends analysis has been discussed in previous chapter and in this 

section is discussed in detail how it causes extraneous cognitive load during learning.  

Initial evidence for the use of means-ends analysis was accumulated using 

maze puzzle problems (Mawer & Sweller, 1982; Sweller, Mawer, & Howe, 1982). 

Sweller and Levine (1982) found that means-ends analysis was used by problem 
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solvers who were given the final goal location of a maze. Although they could often 

find the solution to the maze, they learnt little about the problem structure. 

Additionally, they made more errors when solving the problem and were less able to 

transfer their knowledge about the maze compared to problem solvers who could not 

observe the maze‟s goal location. Sweller and Levine argued that providing 

information about the finish location of the maze caused problem solvers to pay more 

attention to the goal rather than learn about the problem structure. Therefore, they 

concluded that means-ends analysis did not necessarily facilitate learning.  Much 

stronger learning was achieved by removing the goal from the sight of the problem 

solvers.  

Means-ends analysis leads problem solvers to try to reduce the distance 

between the problem state and problem goal by generating a system of sub-goals that 

have to be considered to find the final solution (Ayres & Sweller, 1990; Sweller, 

1988). Sweller (1988) argued that during means-ends analysis, problem solvers have 

to pay more attention to a sub-goal by working backwards from the goal, rather than 

applying previously learnt knowledge about solution paths. This is contradictory to 

schema acquisition, where more attention needs to be directed towards problem states 

and associated moves. Further, during means-ends analysis, problem solvers must 

simultaneously consider the problem state, the goal state, the relation between these, 

and the relation between problem solving operators, while also considering a 



74 

 

sequence of sub-goals. Simultaneously handling a large number of elements requires 

a heavy use of working memory capacity, and thus learning is hindered.  

 In sum, presenting novel problems, such as the maze problem previously 

noted, causes the use of means-ends analysis, which requires a heavy use of cognitive 

processing. By asking learners to solve problems without direct instruction, 

instructional designers or teachers are creating extraneous cognitive load. To prevent 

the use of means-ends analysis and the generation of extraneous cognitive load, 

Sweller and colleagues devised and tested two alternative learning strategies: (1) 

goal-free problems, and (2) worked examples. The following section discusses these 

two strategies. 

 

The Goal-Free Effect 

Goal-free problems are also known as no-goal problems. Considerable 

evidence has shown that a goal free strategy is a superior learning strategy to 

conventional problem solving, and its effect is called the goal-free or goal-specificity 

effect (Sweller et al., 2011). To use the goal-free strategy, acquisition problems are 

presented without a specific goal. By removing the goal, means ends analysis 

becomes impossible because problem solvers cannot work backwards from a goal, as 

there is no goal. Instead, learners are directed to solve the problem using a forward 

strategy based on the problem statement.  



75 

 

Sweller and Levine (1982) identified the goal-free effect in their maze-

tracking research. As discussed previously, when problem solvers were presented 

with the goal, they tended to use means-ends analysis and did not learn about the 

problem structure. On the other hand, when problem solvers were not presented with 

the goal, they attempted to use a solution rule they had learned and hence developed 

knowledge about the problem structure.  

In a series of four experiments, Sweller, Mawer, and Ward (1983) tested if 

goal free problems would eliminate the use of means ends analysis. They predicted 

that substituting the instruction to find a specific variable with goal free instructions, 

as well as removing the goal, would reduce the use of a means ends strategy. Using 

geometry problems, where students had to find angles using specific theorems, during 

acquisition a goal free group was given the instruction “Calculate the value of as 

many angles as possible” for problems where the goal had been removed. In contrast, 

a goal group had a clearly defined goal (angle X), and were given the specific 

instruction “Calculate the value of X” (Sweller, et al., 1983, p. 653). Overall the 

results found a goal free effect, as students who were provided with goal free 

problems during the acquisition phase, performed better on later goal-specific tests 

than students who were given conventional goals during acquisition (Sweller et al., 

1983). 
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Figure 10. Example of goal-free problem 

 

Figure 11. Example of goal-given problem 

 

Similarly, Owen and Sweller (1985) investigated goal free problems in 

trigonometry, where triangle sides needed to be calculated. Again during the 

acquisition phase the goal was removed for a goal-free group who were asked to 

“find the length of all unknown sides”, while the goal group used conventional 

problem solving to find a fixed goal (a given side of the triangle). Owen and Sweller 
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found that the goal-free group made fewer errors than the goal group, and had better 

transfer performance.  

In an attempt to capture error patterns when solving novel problems, Ayres 

and Sweller (1990) conducted a series of experiments using multi-step geometric 

problems for high school students (calculating angles). It was confirmed that most 

errors occurred during sub-goal calculations as a result of using means ends analysis. 

By removing the goal, and modifying the goal statement into “find all unknown 

angles”, instead of  “find x” (Ayres, 1993, p. 378), it was found that goal-free 

problems prevented the use of means ends analysis and led to superior learning. 

Further evidence for the goal free effect has also been demonstrated by 

several studies. Bobis, Sweller, and Cooper (1994) used primary school children 

learning about geometrical paper folding; Vollmeyer, Burns, and Holyoak (1996) 

used university students studying biology; Paas, Camp, and Rikers (2001) used 

elderly people who were learning computerised mazes; and Wirth, Künsting, and 

Leutner (2009) used high school students examining computerised physics problems.  

There are some possible limitations to the goal-free effect. The applicability 

of goal-free problems in classroom learning with time restrictions, where finding 

many irrelevant „unknowns‟ (e.g., sides and angles can be found), may result in many 

unnecessary calculations that detract from focusing on the most important structures 

(Sweller et al., 2011). Additionally, when the aim is to learn about an application of a 

specific procedure, a defined goal may be more suitable (Wirth et al., 2009). 
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Therefore, although the use of goal-free problems does reduce the use of backward-

working strategies, this can come at a cost. 

The worked example strategy was developed to overcome these limitations. 

The following section discusses the worked example effect and the required format 

for worked examples to be successful. 

 

The Worked Example Effect 

In a conventional learning environment, a worked example is commonly used 

to demonstrate how to solve a type of problem, which is then followed by practice on 

a number of similar and/or transfer problems. Mathematics or other computational 

learning domains have used worked examples for this purpose. Moreno (2006) 

describes worked examples as instructional devices for learning a specific problem 

solving skill. Worked examples usually include the problem statement and step-by-

step moves leading to the final solution (Ayres & Sweller, 2013). Further, as R. K. 

Atkinson et al. (2000) commented worked examples should show an expert‟s 

problem solving model for learners to study and imitate. 
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How worked examples reduce extraneous cognitive load 

Cognitive load theorists have advocated worked examples as an effective 

strategy to reduce extraneous cognitive load and facilitate effective schema 

acquisition. Essentially worked examples eliminate the use of means-ends analysis 

(Sweller et al., 1998) by presenting a solution to study rather than asking students to 

find one. According to cognitive load theory, when learners who are given worked 

examples during acquisition perform better on subsequent tests than learners who are 

given the same problems to solve during acquisition, the worked example effect 

occurs (Sweller et al., 1998). Sweller et al. argued that when learners are provided 

with worked examples to study, they are directed to pay attention to the problem 

states and the various associated moves, rather than focusing on the goal. Knowledge 

acquired from worked examples also decreases the chance of using means-ends 

analysis when given similar problems; hence when studying worked examples, 

working memory load is devoted to schema acquisition and automation.  

Furthermore, Sweller (2006) illustrated that learning from worked examples is 

an example of the borrowing principle, and learning by solving novel problems is an 

example of the randomness as genesis principle. A worked example can be deemed 

the representation of knowledge from an expert‟s long term memory. Accordingly, 

worked examples can be used to acquire new knowledge via the borrowing principle. 

When relevant information is either inaccessible or does not exist, learning through 

problem solving occurs via the randomness as genesis principle. As was discussed in 
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Chapter 2, acquiring knowledge via the borrowing principle is more likely to be 

effective because it imposes a lower cognitive load compared to the randomness as 

genesis principle.  

R. K. Atkinson et al. (2000) reported that research into the use of worked 

examples has been carried out for more than six decades; however, in the 1980s, 

researchers paid more attention to the strategy as an alternative to the ineffective 

problem solving methods (e.g., means-ends analysis). Most of the original research 

used controlled experiments to test the prediction that learning novel (complex) 

problems from worked examples is more advantageous compared to learning by 

problem solving only (Cooper & Sweller, 1987; Sweller & Cooper, 1985; Zhu & 

Simon, 1987). The following section discusses the empirical evidence in support of 

the worked example effect.  

 

Initial evidence for the worked example effect 

The initial evidence that worked examples can facilitate knowledge 

acquisition was provided by Sweller and Cooper (1985). They predicted that worked 

examples can be used to direct learners‟ attention away from the goal of a problem to 

the relations between problem states and associated moves. In a series of four 

experiments using a high school algebra topic, learning with worked examples was 

compared to learning through problem solving. In the initial acquisition phase, the 
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worked example group used pairs of worked examples and similar conventional 

problems. For each pair students were required to study a problem and then solve a 

similar problem. The problem solving group was given the identical problem pairs to 

those in the worked example condition, but all problems were presented as 

conventional problems which students had to solve. In the first two experiments, the 

acquisition phase was followed immediately by a test consisting of problems similar 

to those in the acquisition phase. The results indicated that the worked example group 

spent substantially less time solving the problems and made fewer errors. 

To test whether worked examples facilitated transfer to dissimilar problems, 

the last two experiments included transfer problems in the test phase. No significant 

difference was found for these transfer problems. It was suspected that the relatively 

limited number of problem types used in the acquisition phase might have hindered 

transfer. Sweller and Cooper (1985) concluded that while the use of worked examples 

facilitated schema acquisition, the strategy was only beneficial on a restricted range 

of problems.  

In a follow up study, Cooper and Sweller (1987) argued that their original 

work (1985) did not show transfer effects because the acquisition phase was too short 

and the learning material might have extended the working memory load too much to 

promote schema acquisition and automation. Cooper and Sweller (1987) predicted 

that if learners have sufficient time during acquisition, schemas would become more 

automated, leading to greater transfer. To test this prediction through worked 
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examples, they conducted a series of experiments using less complex material rather 

than those that they used previously (1985) and provided more learning time.  

Cooper and Sweller (1987) found that the worked example group required 

less time during the acquisition phase compared with the conventional problem 

solving group. While there was no significant difference between groups in similar 

test results, a significant difference was found for the transfer problems, with less 

completion time needed and less errors made by the worked example group. Since the 

problems were less complex and sufficient time was provided during the acquisition 

phase, both conditions facilitated schema acquisition for similar test problems. 

However, the schema automation required for transfer problems was only facilitated 

under the worked example condition.   

Both studies by Sweller and Cooper described above have become influential 

because they provided the initial evidence that learning by worked examples can be 

more effective than conventional problem solving. It was argued that worked 

examples eliminate the use of means-ends analysis that imposes a heavy cognitive 

load. As worked examples considerably reduce this extraneous cognitive load more 

working memory resources are available for schema acquisition and automation.  

More evidence for the worked example effect in mathematics was provided by 

Zhu and Simon (1987) in their longitudinal study using a 3-year curriculum in 

algebra and geometry in a Chinese middle school. Zhu and Simon found that students 
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studying the worked examples could complete the three-year course in only two 

years. Research by Tarmizi and Sweller (1988) using geometry also found the worked 

example effect, once split-attention was avoided (more detail on split-attention is 

given later). Further evidence of the worked example effect were provided by Chi, 

Bassok, Lewis, Reimann, and Glasser (1989) using college physics, and Ward and 

Sweller (1990) using geometric optics and kinematics.  

 

The growth of research on the worked example effect 

Since this early research, a massive amount of research examining the 

effectiveness of worked examples have been completed, not only in mathematics and 

its applications which have more-structured procedures (for review, see R. K. 

Atkinson et al., 2000; Ayres & Sweller, 2013; Sweller et al., 2011), but also in less-

structured tasks, such as learning musical notation (Owens & Sweller, 2007), visual 

art recognition (Rourke & Sweller, 2009), text interpretation (Oksa, Kalyuga, & 

Chandler, 2010), legal case reasoning (Nievelstein, van Gog, van Dijck, & 

Boshuizen, 2013), and essay writing (Kyun, Kalyuga, & Sweller, 2013). Worked 

example instructions have also been implemented in multimedia (e.g., Moreno & 

Mayer, 1999; Mousavi, Low, & Sweller, 1995), hypermedia (e.g., Gerjets, Scheiter, 

& Schuh, 2008), and web-based learning environments (e.g., Crippen & Earl, 2007). 
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All these studies provided strong evidence of the worked example effect, indicating 

that the effect is not limited to a particular domain or learning setting. 

Cognitive load researchers have investigated variations of the format of 

worked examples in order to accommodate different learning materials and the 

characteristics of the learner. In turn, several factors that moderate the effectiveness 

of worked examples have been identified. These factors are usually explained in 

terms of whether the modified instruction format reduces or increases either 

extraneous or intrinsic cognitive loads. Cognitive load theory has derived 

instructional principles based on these findings, as the following discussion indicates.  

 

Variations to Worked Examples 

Most research on worked examples has demonstrated the effectiveness of 

learning from worked examples rather than learning by solving conventional 

problems. The worked example instruction usually combines worked examples and a 

similar problem solving task. However, researchers have implemented the instruction 

in different ways. Therefore, further cognitive load effects have been generated based 

on the variations of the instruction. 
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The alternation strategy: Study one - Solve one 

An important consideration for teachers and instructional designers is how to 

structure worked examples. When testing the worked example effect for the first 

time, Sweller and Cooper (1985) presented pairs of worked examples and structurally 

identical problems to be solved. Sweller and Cooper “assumed that motivation, while 

reading a worked example, would be increased by the knowledge that a similar 

problem would need to be solve immediately afterwards” (1985, p. 69). Many 

researchers who have investigated the worked example effect adopted this alternation 

format in their study (Sweller et al., 2011). An example of alternating worked 

examples with similar problem can be seen in Figure 7. 
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Figure 7. An example of alternating worked examples with a similar problem 

to-be-solved. 

Trafton and Reiser (1993) provided direct evidence of the effectiveness of the 

alternation format compared to a blocked format. As can be seen in Figure 8, two 

alternating format conditions were investigated; students were either given pairs of 

an example to study and a similar problem to solve, or pairs of two similar problems 

to solve. And there were two blocked formats; students were given a set of examples 
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to study, and then a set of similar problems to solve; or a set of problems to solve, 

followed by a set of similar problems to solve. 

Alternating 

Example 

 Alternating 

Problem Solving 

 Blocked 

Example 

 Blocked 

Problem Solving 

 Study example 

1a 

 Solve similar 

problem 1b 

  Solve problem 

1a 

 Solve similar 

problem 1b 

  Study example 

1a 

 Study example 

2a 

 and so on 

  Solve problem 

1a 

 Solve problem 

2a 

 and so on 

 Study example 

2a 

 Solve similar 

problem 2b 

  Solve problem 

2a 

 Solve similar 

problem 2b 

  Solve similar 

problem 1b 

 Solve similar 

problem 2b 

 and so on 

  Solve similar 

problem 1b 

 Solve similar 

problem 2b 

 and so on  and so on   and so on   

Figure 8. Alternating or blocked formats, adapted from Trafton and Reiser (1993) 

 

Trafton and Reiser (1993) found that the most efficient strategy was the 

alternating example format, where a similar problem to solve was given immediately 

after each worked example was presented to study. The alternating problem solving 

or the blocked problem solving formats were not efficient strategies, and the blocked 

example format was found to be the least efficient overall. 

More recently, van Gog, Kester, and Paas (2011) compared the alternation 

strategy, example–problem pairs, to the other three strategies: problem–example 

pairs, examples only and problems only. As found by Trafton and Reiser (1993), 

example–problem pairs were an effective strategy compared to the problem–example 

pairs and problems only. Additionally, they found that the effectiveness of the 

example–problem pairs was not significantly different from giving the examples 
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only. And also, the effectiveness of the problem–example pairs was not significantly 

different than the problems only. Furthermore, Reisslein, Atkinson, Seeling, and 

Reisslein (2006) observed that low prior knowledge students benefited from 

example–problem pairs; but, on the other hand, high prior knowledge students  

benefited from problem–example pairs (see the expertise reversal effect in following 

section). Consequently, it can be concluded that the original alternation format of 

Sweller and Cooper (1985) was an effective method for structuring worked examples, 

especially for learning novel materials. 

 

The problem completion effect 

When studying worked examples, teachers/ instructors have to insure that the 

learner is attending to the task. Although most worked examples provide full solution 

steps, Chi et al. (1989) found that most low prior knowledge students did not try to 

fully read and study all the solution steps provided in the examples. To overcome this 

potential problem, van Merriënboer (1990) suggested the use of completion problems 

that require learners to complete some key solution steps in the worked examples by 

themselves. Using an introductory computer programming task, van Merriënboer 

showed that this strategy can be just as effective as studying worked examples with 

complete solution steps, particularly when worked examples have many solution 

steps.  
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Using the learning domain of statistics, Paas (1992) investigated the effect of 

completion problems by comparing three groups: partially completed worked 

examples, worked examples and conventional problems. Results indicated that the 

completion and worked example conditions resulted in significantly higher 

performance than conventional problem solving condition. In addition, Paas found 

that the completion and worked example conditions required a significantly shorter 

study time than conventional condition. Paas also used a subjective scale to measure 

perceived mental effort during the tests, demonstrating that that the conventional 

group invested more mental effort than the other two groups. In other words, students 

in the problem solving group were learning very inefficiently as they had a lower 

level of test performance, but invested more mental effort (experienced higher 

cognitive load). 

It has been argued that by partially completing the example, learners are 

guided to pay more attention to the problem state and the provided key solution steps 

while filling the incomplete solution steps (Sweller et al., 2011). Sweller et al. 

contend that completion problems might be considered a combination of worked 

examples and problem solving, and can be used as an alternative format to standard 

worked examples. In further research, completion problems have been used to 

generate the fading guidance effect (see following Section), as a consequence of the 

expertise reversal effect, which is discussed next. 
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The expertise reversal effect 

The expertise reversal effect occurs when an instructional strategy that is 

effective for low prior knowledge is inefficient for high prior knowledge learners (see 

Kalyuga, Ayres, Chandler, & Sweller, 2003). It is argued that the prior knowledge of 

more experience learners will interact with the presented instructional materials, 

replicating the same information and leading to redundancy. Redundancy creates 

extraneous cognitive load for the learners and ultimately interferes with learning (the 

redundancy effect is discussed further in following Section). 

Early evidence for the expertise reversal effect was found by Yeung, Jin, and 

Sweller (1997). Using English reading passages and the explanatory notes, Yeung et 

al. (1997) examined the affect of split attention and integrated formats on students 

with low and high expertise in the domain (see the split attention effect Section). In 

the comprehension test, they found that high prior knowledge students benefited from 

the split attention format but not from the integrated format, as it was redundant. In 

contrast, low prior knowledge students benefited from the integrated format, but not 

from the split attention format, which created extraneous load. Similar findings were 

found by Kalyuga, Chandler, and Sweller (1998) using electrical circuit problems 

where instructions based on split attention were compared to an integrated format. 

Again the integrated format, which was helpful in overcoming split-attention for low 

knowledge learners, was found to be ineffective for high knowledge learners.  
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More evidence of the expertise reversal effect was provided by Tuovinen and 

Sweller (1999). In this study the effectiveness of worked examples was tested against 

an exploration practice (conventional problem solving). Using database-programming 

tasks for college students, Tuovinen and Sweller found that only students with no 

prior experience with database programs benefited from worked examples. For 

students with some experience in the domain, the effectiveness of worked examples 

was negligible.  

Kalyuga, Chandler, and Sweller (2001) investigated the interactions between 

worked examples, expertise, and problem complexity. When learning about more 

complex tasks, novice learners initially benefited from worked examples compared to 

a conventional problem strategy (exploratory learning). But after two training periods 

with worked examples, learner expertise increased and the worked example effect 

disappeared. In fact, the exploratory learning strategy became more effective than the 

worked example strategy.  

As mentioned previously, Reisslein et al. (2006) found that example–problem 

pairs were more effective for low prior knowledge students since the examples 

assisted them with initial knowledge acquisition. Additionally, the high prior 

knowledge students may have received an advantage from the problem–example 

pairs because they already had sufficient prior knowledge to solve the initial problem, 

and the subsequent example may have provided useful feedback. 
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The expertise reversal effect was also demonstrated by Pollock et al. (2002) in a 

study designed to lower intrinsic cognitive load using worked examples. Pollock et al. 

(2002) reduced the element interactivity of complex tasks by isolating their element 

before introducing the tasks with fully interacting elements. This 2-stage strategy 

benefited less knowledgeable learners, but not more knowledgeable learners. It was 

argued that high knowledge learners were already able to maintain and process tasks 

that consisted of fully interacting elements, but not low knowledge learners. Further, 

Ayres (2006) also showed that low prior knowledge students benefited from an 

isolated-element (or partial) approach, whereas high prior knowledge students 

benefited only from fully interacting-element tasks (see also Ayres, 2012). 

Much evidence in support of the expertise reversal effect has been accumulated 

by cognitive load theorists (see Ayres & Paas, 2007; Sweller et al., 2011). Overall the 

findings highlight the importance of considering levels of prior knowledge when 

designing instructions. In the case of worked example instructions, if the information 

presented in a worked example has already been acquired by learners, the worked 

example will be redundant and will lead to the expertise reversal effect. In such 

situations, learners would be able to learn through problem solving. Considerations of 

the expertise reversal effect were used to develop the guidance fading strategy. 
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The guidance fading strategy 

The guidance fading strategy uses a combination of worked examples, 

completion problems, and problem solving which are presented sequentially, and 

designed to facilitate a smooth transition from novice to more experienced learners 

(R. K. Atkinson, Renkl, & Merrill, 2003; Renkl & Atkinson, 2003; Renkl, Atkinson, 

Maier, & Staley, 2002). Underlying this strategy is the expertise reversal effect, 

because, as expertise develops, less direct guidance from worked examples is 

required. 

Renkl et al. (2002) suggested two fading techniques, backwards and forwards. 

In a series of backward fading techniques, the first worked example is fully 

completed, the second worked example has the solution to the final step removed, the 

third has the two last steps removed, and so forth, until the final example presents the 

whole problem to-be-solved only. Learners are expected to fill in the steps, whose 

number increases as expertise develops. For the forward fading technique, the series 

occurs in the opposite direction. The first step of the worked out solution is 

incomplete, then the second step is removed, and so forth, in a forward direction until 

the full incomplete problem is presented.  

According to Renkl et al. (2002) the backward fading technique is more 

favourable for low prior knowledge learners since it provides a full worked example 

at the beginning of the learning phase, which is critical in assisting initial knowledge 
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acquisition. Renkl et al. (2002) found the guidance fading strategy to be an effective 

technique to facilitate the transition from novice to expert, compared to a series of 

fully worked examples. 

In addition to Renkl et al.‟s findings, Reisslein, Sullivan, and Reisslein (2007) 

reported that slow fading strategy was more advantageous for low prior knowledge 

students transitioning from worked example stage to independent problem solving. 

Slow fading strategy uses a backward fading technique that provides students with a 

longer phase of knowledge acquisition. In contrast,a fast fading strategy,was found to 

be more advantageous for high prior knowledge students. 

 

Extraneous Cognitive Load Caused by Worked Example Designs 

 

 Cognitive load theory has been particularly concerned that the 

instructional design of worked example is aligned with the learner‟s cognitive 

capacity (Sweller et al., 2011). Two general cognitive effects have been identified as 

a source of extraneous cognitive load which impact on worked example designs: the 

split attention and redundancy effects. 
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The split attention effect 

Split attention occurs when multiple sources of information that cannot be 

understood in isolation are presented separately in terms of space or time, and as a 

result, learners are required to split their attention while mentally integrating the 

different sources of information (Ayres & Sweller, 2005; Sweller et al., 2011; Sweller 

et al., 1998). Mental integration in this case involves searching and matching 

information from the different sources as well as linking the relationships between the 

information. This process increases extraneous cognitive load and reduces learning. 

Extraneous cognitive load can be reduced by integrating the sources of information, 

as the amount of searching and matching can be lowered. For example in the case of 

explanatory text and diagrams the related sources of information should be placed 

near each other on the page. The split attention effect occurs when split-attention 

based instruction produces significantly lower learning outcomes compared to 

integrated based instruction (Sweller et al., 2011). Specifically, split attention caused 

by information separated in space is called the spatial contiguity effect, and when 

separated by time (sequential presentation) is called the temporal contiguity effect 

(Mayer, 2001). 

This effect was initially investigated by Tarmizi and Sweller (1988) using 

circle geometry in a series of five experiments. After failing to find the worked 

example effect in the first three experiments, Tarmizi and Sweller modified their 

worked examples to an integrated format by placing the associated explanatory text 
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within the geometric diagram, rather than below the diagram as traditionally 

presented. Having done this, the integrated format was found to be more effective 

compared to the traditional text-diagram format which caused split attention. 

 

(a) 
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Figure 9. (a) An example of split attention caused by the diagram and related 

explanation and (b) the integrated format, adapted from Sweller, Chandler, Tierney, 

and Cooper (1990) 

Split attention often appears in traditional geometry and coordinate geometry 

textbooks, where a diagram and the associated explanation are presented separately. 

For example, Sweller et al. (1990) illustrated that the coordinate diagram and 

explanation to find the coordinates of a point are usually separated (see Figure 9.a). 

Sweller et al. found the integrated format, as shown in Figure 9.b, was more useful 

for learning than the split-attention format. 

Significant evidence has been found in support of the split attention effect (for 

review, see Ayres & Sweller, 2005; Ginns, 2006). A multimedia alternative to avoid 

split-attention materials is to use a combination of both auditory and visual sources of 

information (Jeung, Chandler, & Sweller, 1997; Mayer, 2001; Mayer & Moreno, 
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2003; Mousavi et al., 1995). This strategy is known as the modality effect, and is 

successful because it allows learners to examine the picture or diagram while 

simultaneously listening to an explanation. The search processes caused by split-

attention are consequently reduced. 

In summary, split-attention materials will impact negatively on learning, 

including the use of worked examples, unless learners have a high degree of prior 

knowledge. The effect can be avoided by integrating the different sources of 

information.  

 

The redundancy effect 

Redundancy occurs when multiple sources of information that can be 

understood in isolation are presented simultaneously. In other words, different 

sources of information repeat the same information. A common example of 

redundancy can be found when a speaker reads to the audience, word-for-word, the 

information already presented on a power-point slide. Consequently, studying worked 

examples with redundant information will also be disadvantageous (Sweller et al., 

2011; Sweller et al., 1998). The negative impact occurs when learners attend to the 

different sources of information and attempt to establish relations between them (see 

Sweller & Chandler, 1994). A direct consequence is that the redundant information 

must be omitted to avoid excessive extraneous cognitive load. The redundancy effect 
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occurs when learning materials containing no redundant information are found to be 

more effective than the materials containing redundant information. Nevertheless, 

like most cognitive load effects, this effect occurs mostly when the material has a 

high element interactivity (Sweller & Chandler, 1994). 

Initial evidence for the redundancy effect was demonstrated by Chandler and 

Sweller (1991) using electrical engineering and biology materials. To avoid split-

attention, Chandler and Sweller designed an integrated instructional format where the 

integration of a diagram and text was not actually required because the diagram was 

self-explanatory, and compared this strategy with a single source of instruction 

containing only the diagram. The results indicated that the design which included 

only a diagram was superior to the dual-mode design. It was argued that the 

explanatory material provided in the integrated instructional group was 

disadvantageous because it imposed extraneous cognitive load caused by unnecessary 

processing.  

Since this initial study was conducted, considerable evidence in support of the 

effect has been collected (for example, see Diao & Sweller, 2007; Kalyuga, Chandler, 

& Sweller, 1999).  

Additionally, van Gog, Paas, and van Merriënboer (2006) found that adding 

lengthy textual explanations to worked examples may cause the redundancy effect. 

Distinguishing between a process-oriented worked example, where additional 

information about why and how the solution steps are chosen are added to the 
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example, and a product-oriented worked example which only shows solution steps, 

van Gog et al. (2006) found the product-oriented worked examples to be superior. For 

electrical circuit problems, the process-oriented worked example created redundancy 

because the learners had to process the essential information (solution steps) and the 

additional information (process information), which was not necessarily related to the 

understanding of the solution steps. As a consequence, the process-oriented worked 

examples imposed a heavier cognitive load and inhibited learning. 

At a later date, van Gog, Paas, and van Merriënboer (2008) revisited process 

and product oriented worked examples by investigating four different sequences: 

product–product, product–process, process–product and process–process. It was 

found that the sequence of process–product oriented worked examples was most 

advantageous for low prior knowledge learners, but not for high prior knowledge 

learners. Arguably, low knowledge learners benefited by process oriented worked 

examples at the initial stage of knowledge acquisition but once expertise increased, 

process oriented worked examples became redundant and caused extraneous 

cognitive load. This finding added more evidence in support of the expertise reversal 

effect discussed above. 
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Promoting Germane Cognitive Load 

Briefly, as previously noted, germane cognitive load can be described as the 

working memory resources devoted to dealing with the intrinsic cognitive load 

presented by the learning material. This cognitive load is considered a „good‟ or 

effective load since it directs working memory to activities that support schema 

acquisition and automation (see Chapter 2). Two cognitive load theory effects have 

been generated from the implementation of worked example instructions aimed at 

specifically promoting germane cognitive load: namely, the variability and the self-

explanation effects.   

 

The variability effect 

It is not unusual for instructors to provide multiple worked examples, consisting 

of very similar examples, or a wide range of different examples. High variability 

worked examples present a wide range of different problems that utilise the same 

concept or procedure. According to the variability effect, worked examples with 

highly variable features improve learning compared to worked examples with more 

similar features (Sweller et al., 2011; Sweller et al., 1998).  

Using a geometry task in computer numerically controlled machinery 

programming, Paas and van Merriënboer (1994) examined the effectiveness of 

studying worked examples under a number of conditions, including a set of problem-
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example pairs with low and high variability. Worked examples with low variability 

had only differences in numerical values, but in those with high variability, there 

were differences in both values and problem formats, including problem goals and 

problem settings.  The results suggested that high variability worked examples were 

superior to those with low variability. Paas and van Merriënboer argued that problem 

situation variability could motivate students to improve schema acquisition and 

automation while they are learning to recognise the key feature between modified 

problems, hence imposing a high germane cognitive load. 

Quilici and Mayer (1996) presented worked examples in statistics word 

problems, with high variability in terms of structural and surface features. They 

argued that worked examples can be used to assist learners solving similar problems 

through analogical reasoning, where learners can extract and map the surface or 

structural feature of the worked example to the problem they are attempting to solve. 

Surface variability was determined by the attributes of the objects illustrated by the 

cover story of the word problems, while structural variability was defined by 

variations of relations among objects within the solution procedure. Their findings 

indicated that the high variability structure, emphasising examples facilitated better 

learning than the surface emphasising examples. Catrambone (1994) further found 

that transfer skills would be facilitated when variations in sub-goals were emphasised. 

Similarly, Renkl, Stark, Gruber, and Mandl (1998) demonstrated that a block of 

multiple examples were superior to a block of uniform examples.  
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The self-explanation effect 

Earlier research on worked examples conducted by Chi et al. (1989) discovered 

that  self-explanation methods helped high achievers process worked examples in a 

more meaningful manner. For this reason, researchers argue that asking learners to 

self-explain, like more knowledgeable learners (e.g., prompting them to elaborate 

solution steps), improves learning from worked examples since it directs germane 

working memory resources to deal with essential elements that constitute the new 

knowledge demonstrated in the worked out solution (Chi, De Leeuw, Chiu, & 

Lavancher, 1994; Renkl, 1997b, 2002).  

The self-explanation effect occurs when adding self-explanations improves 

learning from worked examples compared to not adding self-explanations. The 

studies of Catrambone (1994) and Renkl et al. (1998) have shown that eliciting self-

explanations, especially with high variability, tended to improve the effectiveness of 

worked examples. Moreover, R. K. Atkinson et al. (2003) found that low ability 

students benefited from self-explanation prompts that were provided with each 

solution step of  the worked examples, compared to students who were not given self-

explanation prompts. 

Renkl et al. (1998) explored the benefit of training students to self-explain by 

comparing two groups: explicit training and general training. In explicit training, the 
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participants were given a short training session covering essential components in self-

explanation, an example of self-explanation as well as coached practice. In general 

training, the participants were given thinking-aloud training. It was found that the 

explicit self-explanation training was superior and, in particular, benefited the low 

knowledgeable learners. 

Despite some positive results in favour of self-explanations, there have also 

been some negative effects. Using molar and modular worked examples, Gerjets, 

Scheiter, and Catrambone (2006) found that self-explanation instruction was not 

advantageous. Gerjets et al. (2006) illustrated that the main distinction between molar 

and modular is that molar examples emphasise problem categories while modular 

examples emphasise procedural solutions. It was found that modular examples were 

more effective and self-explanation was not advantageous for both. Gerjets et al. 

argued that the examples had written explanations and therefore may be already 

intelligible; hence the self-explanation prompts forced learners to process redundant 

information contained within the examples and their elaborations.  

Additionally, Große and Renkl (2006) found that self-explanation instruction 

did not enhance learning using either the multiple solutions or uniform solutions of 

worked examples. Moreover, when learners were given incorrectly worked out 

solutions and asked to self-explain, the quality of self-explanations decreased, 

especially for more able learners (Große & Renkl, 2007). 



105 

 

Self-explanation on one hand may allocate a learner‟s germane resource to deal 

with the intrinsic cognitive load presented by worked examples, and may enhance 

learning. However, on the other hand, self-explanation instruction may create 

unnecessary extraneous cognitive load and reduce learning. In reviewing the self-

explanation effect generated by research published before 2000, R. K. Atkinson et al. 

(2000) indicated that more evidence for the self-explanation effect during studying 

worked examples was needed. More recently, Wittwer and Renkl (2008) found that 

instructional explanations often did not adapt sufficiently to the learner‟s 

characteristics. Furthermore, their effectiveness may also depend on the knowledge 

domain, whether it is more conceptual, procedural or reasoning, and the educational 

setting, whether learning takes place in the classroom, with peer tutors or in small 

group discussion. Consequently, adding self-explanations to worked examples still 

needs considerable research to identify the conditions under which it might be most 

effective. 

 

Summary 

This chapter discussed a number of cognitive load effects generated by 

cognitive load theory, especially the goal-free and worked example effects. Both 

strategies (goal-free problems and worked examples) were established by the theory 

to prevent the use of means-ends analysis when learning through conventional 
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problem solving. Means-ends analysis creates high extraneous cognitive load and 

hampers learning. 

The effectiveness of goal-free problems has been shown using a number of 

various learning tasks. The goal-free effect is obtained by removing the goal state of a 

problem during an acquisition period. Learning is facilitated through goal-free 

problems as cognitive capacity is directed to the problem state and associated moves, 

rather than the problem goal and the search to reduce the distance between the 

problem state and the problem goal induced by means-ends analysis. 

The effectiveness of worked examples for learning about novel information 

has been shown across many domains. Learning from a set of worked examples and 

problem solving pairs, or completion problems (partial worked examples), rather than 

trying to solve problems without guidance, has been shown to be highly effective in 

the initial stages of knowledge acquisition. Nevertheless, the expertise reversal effect 

has demonstrated that worked examples can be ineffective for high prior knowledge 

learners. To overcome the expertise reversal effect, the guidance fading effect 

provides a gradual transition from full worked examples to full problem solving 

instructions as expertise increases. Lastly, it is noted that formatting worked 

examples requires careful consideration, as other sources of extraneous cognitive load 

can be created through split-attention and redundant materials. Finally, two strategies, 

variability and self-explanations, were discussed as they have been used with worked 

examples to promote germane cognitive load and improve learning. 
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Chapter VI    Collaborative Learning 

 

Collaborative learning is an example of a social context that commonly 

allocates three or more students into small groups (Levine & Moreland, 2012) where 

they mutually work together and learn from each other while attempting to 

accomplish a problem solving task (Van den Bossche, Gijselaers, Segers, & 

Kirschner, 2006).  

 

The idea of dividing a classroom into small work groups has been applied by 

many teachers for decades. Recently, school curricula in some countries have 

recommended teachers use group learning. For example, the mathematics curriculum 

used nationally in the USA that was developed by the NCTM (National Council of 

Teachers of Mathematics) in 2000, NCTM (2000, p. 10) stated in its teaching 

principles that teachers should encourage “students‟ discussion and collaboration” as 

well as encouraging students to “construct mathematical arguments and respond to 

others‟ arguments”. The learning principle in the curriculum further stated that:  

 

“Learning with understanding can be further enhanced by classroom 

interactions … social interaction can be used to promote the recognition of 

connections among ideas and the reorganization of knowledge … in such 



109 

 

settings, procedural fluency and conceptual understanding can be developed 

through problem solving, reasoning and argumentation” (NCTM, 2000, p. 13).  

 

In a study comparing traditional curricula and NCTM curricula, Latterell 

(2005) found that the currently used NCTM curricula emphasise the use of group 

work and group discussion methods. Latterell (2005, p. 96) asserted that “[t]he 

curricula are often set up so that the teacher introduces a topic then students are 

responsible for working with each other …”. Latterell also observed that the NCTM 

curricula are widely used in many countries, so it can be assumed that many other 

countries have applied this method at schools. In Indonesia, collaboration has been a 

respected value in daily life and it is commonly called “gotong royong” which means 

working together. Recently, the National Curriculum of 2013 has included 

collaborative learning or cooperative learning as highly recommended learning 

method in mathematics classrooms. Accordingly, this chapter discusses cognitive 

psychological aspects need to be considered when instructing students to learn in 

small groups. 

 

In the research literature, a group of students working in a collaborative 

learning environment is often called different names, such as: group work, group 

study, group learning, small groups, or group discussions. In a strictly designated 

setting, it is also known as cooperative learning (Johnson & Johnson, 1994) where 
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studying in groups is based on a problem solving approach, applying specific 

grouping rules and rewards, and usually requiring longer learning periods.  

 

Historically, the more usual setting is face-to-face where group members 

physically meet, and communicate directly with each other. Grouping settings can 

also occur in a virtual environment, where group members are physically separated, 

and collaboration is facilitated by communication technology devices. More recently, 

Kim and Baylor (2006) proposed learning by an interaction framework using 

pedagogical agents, such as a digital character whom is created using a computer 

program, and interacts with learners.  

To give a broad sense of collaborative learning, the theoretical frameworks 

proposed by prominent theorists are initially summarised in this chapter. A number of 

positive and negative factors that contribute to cognitive performance (i.e., 

knowledge acquisition and transfer) are also identified.  

 

Why Collaborative Learning: Some Theoretical Frameworks 

Collaborative learning has been widely used (Gillies, 2003), well-researched 

(Levine & Moreland, 2012) and advocated by many leading educators and 

organisations (e.g., NCTM, 2000; Rosenshine, 2010). In particular, social 
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constructivist theory is frequently used to emphasise that learning should be 

facilitated through social and collaborative activities where students construct 

knowledge by interactions with others (Johnson & Johnson, 1994; Schreiber & Valle, 

2013).  

Underlying social constructivism are the cognitive developmental 

perspectives of Piaget and Vygotsky (Blatchford, Kutnick, Baines, & Galton, 2003; 

E. G. Cohen, 1994; Schreiber & Valle, 2013). Based on Piaget‟s theory (see Chapter 

2), cognitive disequilibrium stimulates learners to interact within the social context to 

assimilate, modify and accommodate knowledge into more developed constructions. 

According to Piagetian theory, learners are the main actors in knowledge construction 

(Daniels, 2001). In other words, learners have to construct knowledge by themselves, 

and hence teachers should only provide the social context and materials that support 

discussions aiming at cognitive conflict resolution (Geary, 1995).  

On the other hand, Vygotsky‟s theory assumes that learning is enhanced 

within social and cultural contexts because these contexts influence how learners 

interpret and understand concepts (Daniels, 2001). It is argued that interactions within 

social contexts facilitate knowledge construction and, as a consequence, teachers 

should create a collaborative environment where learners can actively communicate 

and contribute towards constructing meaning (Schreiber & Valle, 2013). Vygotsky 

proposed the concept of the zone of proximal development in which learners require 

scaffolding (assistance) from instructors or more able peers to understand meaning 
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that learners cannot comprehend by themselves (Daniels, 2001; Schreiber & Valle, 

2013).  

It is further argued that the zone of proximal development can also take place 

in collaborative contexts, consisting of relatively similar levels of expertise (e.g., 

peers), as long as active collaboration is maintained (Schreiber & Valle, 2013). 

Moreover, Mayer (1999) noted that, according to Vygotsky, collaborative learning 

should be situated in the real world of the learners, thus creating more authentic and 

meaningful learning. Nevertheless, both Gillen (2000) and Mayer (1999) argued that 

the implementation of Vygotsky‟s theory in classroom practices may create a number 

of challenges because not all lessons can occur in natural settings.  

From a social cognitive learning perspective, Bandura (1986) argued that 

learning is determined by triadic interactions between cognitive ability (e.g., 

attention, retention, reproduction), social behaviour (e.g., motivation, self-efficacy) 

and environment (e.g., learning situations, social systems). In particular, Bandura 

suggested that people have evolved to learn from the observation of other people‟s 

behaviour. Consequently, collaborative learning creates a collective behaviour that, to 

some extent, contributes to individual motivation, which determines whether learners 

acquire observed skills or not. 

According to Schmidt et al. (2007), group discussion in a problem based 

learning environment (PBL –a learning strategy advocated by many social 
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constructivists) has two functions. First, it activates prior knowledge among group 

members to deal with the learning task. Second, it facilitates sharing expertise. Prior 

knowledge activation and sharing expertise are essential to begin collaboration and 

for learning new problem solving skills. Both these points are consistent with a 

cognitive load theory approach to learning. Access to prior knowledge reduces 

working memory load, and by working together in a group, the intrinsic cognitive 

load may also be reduced because of cognitive sharing among group members 

(Hoogveld, Paas, & Jochems, 2003; Schmidt et al., 2007).  

It is clear that many educationalists believe that there are strong theoretical 

foundations to support collaborative learning, as it has been widely advocated and 

implemented. It is argued that the role of social interactions in learning are vital to 

foster multiple perspectives and representations of knowledge (Schreiber & Valle, 

2013). Moreover, Blatchford et al. (2003) suggested that group settings are 

pedagogically beneficial for students because their dynamic and dialogic features can 

be expected to affect student engagement in the learning processes. Nevertheless, 

Gillies and Boyle (2010) found that the implementation of collaborative learning in 

classrooms was not always successful. In addition, the National Mathematics 

Advisory Panel, of the US Department of Education (2008) reported that the 

implementation of collaborative learning in mathematics classrooms and curricula 

needed further scientific testing. So even though there is strong support for 
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collaborative learning, there are several issues associated with its successful 

implementation, which are discussed next. 

 

Improving Collaborative Learning 

Many studies have been conducted to identify the factors that improve 

collaborative learning (for reviews, see E. G. Cohen, 1994; Kreijns, Kirschner, & 

Jochems, 2003; Schreiber & Valle, 2013; Van den Bossche et al., 2006; Webb, 2009; 

Weinberger, Stegmann, & Fischer, 2007). It is generally agreed that collaborative 

learning requires active social interactions, and simply putting students together in a 

group does not guarantee that effective collaborative learning will occur.  

Despite the broad variety of research conducted, many studies indicate 

inconsistent findings when learning outcomes are measured (e.g., Barron, 2000; 

Kester & Paas, 2005). Consequently, efficient procedures that can be simply followed 

by collaborative learning instructors have not been easily specified. As stated by 

Webb (2009, p. 21), “... to what extent the teacher‟s role in promoting collaborative 

dialogue depends on specific features of the classrooms and the students in them is 

largely unknown”. Furthermore, research and theory relevant to collaborative 

learning in authentic classroom conditions has been rather limited (Blatchford et al., 

2003). 
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 One factor thought to be crucial in facilitating effective collaborative 

environments is task quality. The E. G. Cohen (1994) review found that it was 

important to choose a suitable task to maintain task-related interactions. According to 

Cohen, the most suitable group task is a task that cannot be carried out by individuals. 

Further, the use of open-ended problems, discovery tasks, or complex problems was 

thought to be necessary in order to stimulate active interactions since they require 

multiple resources and can be solved using different strategies and methods. 

Moreover, Johnson and Johnson (1994), Laughlin, Zander, Knievel, and Tan (2003), 

argued that complex problem solving improves interactions because it promotes the 

exchange of ideas and the discovery of underlying principles.  

In addition to providing complex problems to solve, it is asserted that group 

members should be informed that they should not complete the task alone, but have a 

responsibility to help other members of the group also complete the task (Johnson & 

Johnson, 1994). The perception of a group member that they have to successfully 

work together with the other group members is called positive interdependence. It is 

argued that by having positive interdependence, group members are forced to provide 

mutual support while working together to maximise the learning process (Johnson & 

Johnson, 1994, 2002). It is further suggested that positive interdependence can be 

improved by assessing not only group performance, but also individual performance 

as well as providing group rewards based on both individual and group achievements.  
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An important consideration for effective collaboration is how the groups are 

formed. Some research has shown that allocating close friends to a group produces 

better learning outcomes (Andersson & Rönnberg, 1995; Hanham & McCormick, 

2009; Weldon & Bellinger, 1997). Further, heterogeneous groups consisting of 

mixtures of low ability and medium ability students, and high ability and medium 

ability students, have also demonstrated significant achievement (Webb, 1991). In 

contrast, homogenous groupings of high ability or low ability students have not been 

found to be significantly related to better achievement (Saleh, Lazonder, & de Jong, 

2007). Overall, heterogeneous ability groupings, consisting of a balanced number of 

high, medium and low ability students, is favoured by many researchers (Johnson & 

Johnson, 1994; Webb, 1991). 

Assigning students to groups with little direction or support does not 

guarantee success. Receiving or giving elaborated explanations is considered relevant 

to improve collaborative learning (Webb, 1991; Webb & Mastergeorge, 2003). 

Therefore, Webb suggested that students should be able to request help in such a 

manner that they will receive detailed explanations instead of final correct answers. 

However, to be effective help seekers, training might be needed (Webb, 1991, 2009; 

Webb & Mastergeorge, 2003), since research on giving or listening to explanations 

demonstrated that it did not necessarily improve individual performance (Renkl, 

1997a; Webb & Mastergeorge, 2003). Such training might be advantageous; 
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however, it is also argued that when students do not have sufficient prior-knowledge 

of the to-be-learned material, giving explanations remains a difficult task. 

Additionally, Johnson and Johnson (1994) argued that students should be 

trained specifically on basic cooperation skills, while Schmidt et al. (2007) suggested 

training was needed in typical collaborative skills. Furthermore Laughlin et al. (2003) 

found that providing initial information both about the requirement of the group task 

and the expected group processes was necessary to facilitate effective information 

processing strategies during complex group tasks. 

One well-known negative effect of social interaction is called social loafing, 

which is a tendency to exert less effort when working with others. For example, 

Ingham, Levinger, Graves, and Peckham (1974) investigated group performances in a 

physical task (rope pulling), finding that individual productivity decreased when co-

workers were provided. Latane, Williams and Harkins (1979) reported that individual 

performance in clapping and shouting tasks decreased when they worked with others, 

either face-to-face or perceptually (i.e., they were blindfolded and told that they 

performed together with others, but actually they performed alone). Social loafing is 

also considered a motivational or coordination loss, and the larger the size of the 

group, the higher the tendency for social loafing (Petty, Harkins, & Williams, 1980). 

Petty et al. found that when in groups, students performed fewer positive evaluations 

than students who performed the evaluations alone.  
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Although exerting lower effort when working with others could be seen as 

individual efficiency, however it is important to note that the learning process is an 

individual construction of knowledge which requires individual responsibility to 

learn. If individual accountability (see Johnson & Johnson, 1994) during working in 

groups is decreased through social loafing, it may also lower the individual‟s learning 

as insufficient mental effort is made towards schema acquisition. The aim of learning 

in collaboration is not only to complete the group task, but also to assist each group 

member in mastering the group task.   

Furthermore, Arterberry, Cain, and Chopko (2007) discovered that social 

loafing increased when there was no assessment of the learning process. Furthermore, 

Harkins and Petty (1982) suggested that social loafing can be eliminated by giving 

more difficult tasks to the group or assigning each student to perform different tasks. 

Similarly, Andersson and Rönnberg (1995) also suggested the use of complex tasks 

to reduce negative effects during collaborative work. 

Nevertheless, while possessing collaborative skills is important, it should be 

noted that improving collaborative learning is meant to improve the quality of 

individual performance. However, it has been reported that much of the research into 

the effectiveness of collaborative learning has not directly tested the performance of 

individuals, but has focused more on group processing aspects, such as motivation or 

self-process attributes as well as the whole group performance (F. Kirschner et al., 

2009a; Paas & Sweller, 2012). Hence, it is suggested that the research should give 
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more emphasise to the measurement of performance of each individual after learning 

in collaborative contexts (F. Kirschner et al., 2009a; Paas & Sweller, 2012). 

 

Cognitive Perspective on Collaborative Learning 

 This chapter is concerned with instructional designs for collaborative 

learning in accord with human cognitive architecture. Although cognitive load theory 

has been largely used to test and establish instructional procedures for individual 

learning, with limited data collected on collaborative learning instruction, the theory 

provides a strong theoretical base. Specifically, the recent evolutionary educational 

psychology view of human cognitive architecture can be used to explain some of the 

fundamental underpinnings of collaborative learning and thus design effective 

learning group environments (Paas & Sweller, 2012; Sweller et al., 2011). 

Recently, cognitive load theory researchers have seen collaborative learning 

as an alternative strategy for learning about more complex materials that are difficult 

to learn individually due to working memory restrictions. As such a new cognitive 

load theory effect has been proposed (Sweller et al., 2011). The collective working 

memory effect occurs when individuals obtain higher learning outcomes after learning 

in collaborative contexts compared to individuals who learned alone (F. Kirschner et 

al., 2009a). It is assumed that the intrinsic cognitive load is distributed across group 

members during collaborative learning, freeing up more working memory capacity at 
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the individual group member level. This does not occur when students are engaged in 

individual learning and have to deal with all the working memory load themselves 

(for reviews, see Paas & Sweller, 2012; Sweller et al., 2011). 

The effectiveness of collaborative learning can be seen from the evolutionary 

perspective of cognitive load theory. Paas and Sweller (2012) suggested that 

collaborative learning demonstrates an example of the borrowing and reorganising 

principle. This principle indicates that the most effective way to obtain new 

information is by directly borrowing it from an other‟s long term memory (see 

Chapter 2). As discussed previously, humans have evolved to communicate in 

everyday life, to share and obtain information from each other. Consequently, 

collaborative learning will facilitate learning, as students can share information and 

learn from each other, just like in everyday life (Sweller et al., 2011). 

However, it should be noted that previous studies have shown that effective 

collaboration does not always occur (for example, see Kreijns et al., 2003). 

Specifically, Paas and Sweller (2012, p. 31) note that collaborative interaction 

requires not only “general communication and coordination” like in a natural social 

context, but also requires “task-specific communication and coordination” which is 

more related to assigned learning. Similarly, Geary (1995, 2008) argues that 

collaborative learning has similar features to social contexts where students learn 

biologically primary knowledge. Therefore, in collaborative learning, students tend to 

automatically develop general communication and coordination skills (biologically 
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primary knowledge), which might not be related to learning, rather than allocating 

more attention to the assigned biologically secondary knowledge (Geary, 1995, 

2008). Arguably, task-specific communication and coordination is more useful; 

however, it is argued that students need to learn about this directly through training 

(Paas & Sweller, 2012). As a consequence, the interaction process in collaborative 

learning demands some cognitive load from each group member, and is known as the 

transaction cost (F. Kirschner et al., 2009a). This can be extraneous load (i.e., when it 

is directed to off-task activities) or germane load (i.e., when it is directed to the 

learning task) (Janssen, Kirschner, Erkens, Kirschner, & Paas, 2010). Because 

working memory is limited when learning complex materials, any transaction cost 

extraneous to learning must be kept to a minimum and any transaction cost germane 

to learning must be invested to achieve the expected learning outcomes. 

It is argued that providing students with a complex learning task, divided 

among group members, will promote task-specific collaboration and facilitate the 

collective working memory effect (Paas & Sweller, 2012). When the material is 

shared among group members, task-specific interactions will be required to integrate 

and fully understand the material, and hence direct students‟ attention to the task. 

Consequently, unnecessary extraneous transaction costs (e.g., off-task conversation, 

social loafing) will be less likely to occur.  

When the extraneous transaction cost is kept to a minimum, collaboration will 

facilitate the learning of more-complex materials that are hard to learn individually 
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(Paas & Sweller, 2012). Complex materials impose a high intrinsic cognitive load, 

and novice learners have limited working memory capacity to learn such material. 

However, when the learning material is shared among several group members, an 

individual is required to process less task-relevant information, which is much lower 

in intrinsic cognitive load because of reduced element interactivity. The remaining 

working memory resources can then be allocated to learning about the important 

aspects of the materials by processing relevant information communicated from other 

group members. Although all group members may share all the thoughts discussed, 

the actual information processing will be sub-divided (see P. A. Kirschner, Kirschner, 

& Janssen, 2014). Hence, through collaboration, individuals are more able to learn 

about complex materials. 

 

Evidence for the collective working memory effect 

According to Paas and Sweller (2012), research into the collective working 

memory effect should have two characteristics. Firstly, it should be conducted in 

controlled and randomised experimental conditions by isolating the cognitive effects 

of task complexity and minimising the effects of social and motivational factors on 

collaborative learning. Secondly, it should be conducted in a traditional face-to-face 

collaborative learning context. Interaction in this context is assumed to require 
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biologically primary knowledge and hence impose lower cognitive demand. The 

research reported below followed these requirements. 

Initial evidence in support of the collective working memory effect was found 

by F. Kirschner, Paas, and Kirschner (2009b), using a high-school biology topic, 

where an individual learning condition was compared to a collaborative learning 

condition (consisting of three group members). During the learning phase, students 

were given problem solving tasks to solve individually or collaboratively. For the 

collaborative learning condition, every member of a group had information about one 

third of the whole task only, and hence sharing was required to complete the task; 

whereas in the individual condition, one student was given the whole task to solve. 

Following the learning phase, all students were tested individually with retention and 

transfer tasks. Cognitive load (mental effort) and efficiency measures were also 

collected (see Paas & van Merriënboer, 1994). No significant differences were found 

between learning conditions on the performance tests or cognitive load measures. 

However, there was a significant interaction effect between the learning condition 

and the test type on the efficiency measure. On the transfer test, the collaborative 

learning condition had higher efficiency than the individual learning condition. 

F. Kirschner, Paas, and Kirschner (2011) continued their investigation by 

examining the impact of collaborative learning on low-complexity and high-

complexity tasks. Again using high school biology, low and high-complexity problem 

solving tasks were used to compare learning individually with learning 
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collaboratively (using triad grouping and distributing one third of the task 

information to each member). Interaction effects were found between task-

complexity and learning conditions on performance, mental effort and efficiency 

measures for the transfer test. For the low-complexity task, there was no significant 

difference between learning conditions; however, for the high-complexity task, the 

collaborative learning condition was superior to the individual learning condition.  

The effect of high-complexity tasks on collaborative learning was also 

investigated by Zhang, Ayres, and Chan (2011) using a quasi-experimental design. 

Two collaborative conditions were formed by grouping students together to complete 

a take-home assignment (i.e., designing a personal homepage). One condition was 

task-based (a theme was assigned) and the other an open-ended project (the group 

decided their own theme, content and arrangement). Each group member was 

required to develop at least five web pages and then they worked collaboratively to 

link all the web pages together in a unified homepage. An individual context was also 

created, by assigning a cohort of students to complete the same assignment 

individually (the assigned theme). The open-ended collaborative learning context 

demonstrated higher performance and lower cognitive load compared to the 

individual learning context and the task-based collaborative learning context. Notably 

information about the task was not subdivided across group members as used by F. 

Kirschner, et al. (2009b, 2011) (consequently, there was no need of combining prior-

knowledge among group members). Nevertheless, it can be argued that in the Zhang 
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et al. study active collaboration was achieved since students were not only required to 

complete the assignment in the given period, but there was sufficient time for 

students to develop social interactions outside the classrooms, which might be a more 

natural setting. To reinforce the need for collaboration, students working in groups 

were also required to give presentations to their peers at the end of the learning 

period. 

 More evidence of the importance of task complexity was collected by F. 

Kirschner, Paas, Kirschner, and Janssen (2011). In this study, biology tasks were 

studied in both individual and collaborative learning contexts either by using worked 

examples or through conventional problem solving instructional formats. The 

collaborative groups were structured as in the previous studies (Kirschner, et al., 

2009b, 2011), where each group member was presented with one third of the material 

(one-third of the information of the problem solving task for the problem solving 

group, and one-third of the worked examples for the worked example group) and 

hence sharing of information was required. The individual learners were given either 

full worked examples or problem solving tasks. During the learning phase, students in 

the worked example conditions were asked to study three worked examples only 

(with no paired exercise problems), and equivalently, students in the problem solving 

conditions were asked to solve the three problems without instruction. The results 

indicated that overall, there was a main effect of social context: the collaborative 

conditions led to significantly higher performance and efficiency than the individual 
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conditions on the test. There was an interaction effect between the instructional 

format and the social context on both performance and efficiency. It was shown that 

for the collaborative groups, learning by problem solving was more efficient than 

worked examples. For individuals, learning by worked examples was more effective 

than problem solving. The authors argued that high task complexity imposed not only 

by the intrinsic nature of the task, but also by the instructional format should be taken 

into account to improve collaborative learning. These results confirmed previous 

findings by F. Kirschner, Paas, and Kirschner (2011), that the efficiency of 

collaborative learning was increased by presenting high-complexity problem solving.  

A previous study by Retnowati et al. (2010) compared worked examples with 

problem solving strategies in collaborative settings using a high school geometry 

task. Retnowati et al. found that worked examples benefited both individuals and 

collaborative groups for both numeric and reasoning scores on similar and transfer 

tests. In addition, a marginal interaction effect between worked examples and 

collaborative learning was found for the reasoning score. The results showed that the 

effect of worked examples on reasoning was stronger for collaborative learning. 

However, it is important to note that there was no task-distribution in Retnowati et 

al.‟s study, as group members were not required to share discrete sections of 

knowledge. In other words, collaborative learning could benefit by worked examples 

when each group member had the same worked examples to study together (i.e., to 

discuss the same materials with essentially the same knowledge base). Overall, this 
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study, consistent with the worked example effect, found no evidence for the 

effectiveness of problem solving strategy when learned individually or 

collaboratively. 

It is notable that the evidence for the collective working memory effect was 

found through the implementation of very structured and scripted collaborative 

groupings. Firstly, each group member received only a portion of the learning 

material. This setting is not common in regular classrooms where students usually 

receive the same learning material. Secondly, the group members were not allowed to 

use pencil/pen and paper while learning to prevent offloading any working memory 

burden, thus controlling this factor. The collaboration process relied heavily on verbal 

communication. Consequently, F. Kirschner, Paas, Kirschner, et al. (2011, p. 597) 

concluded that “it is not clear to what extent the results obtained in this study can be 

generalised to real classroom settings”.  

Nevertheless, recent research has examined which collaborative structure is 

more effective. It was found that when collaboration among group members is a must 

because of each group member has to share their knowledge to learn the given 

material then the individual performance is better compared to when collaboration is 

simply encouraged as their support of learning (Retnowati, Ayres, & Sweller, 2015). 

The “must share knowledge” group structure used a jigsaw approach in structuring 

the collaborative group (i.e. group members are divided and have different knowledge 

base), and the “encouraged” group structure used the common structure (i.e. all 
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students have the same knowledge base). In this research, the learning material is 

Year 7 geometry called the application of Pythagoras‟ theorem to find the area of a 

triangle.  

Task: Find the area of these figure (not to scale) 

 

Figure 12. Example of problem solving requires Pythagoras‟ theorem and the concept 

of triangle‟s area 

 

The learning phase was divided into two stages. In the jigsaw groupings, half 

students learned the basic knowledge of triangle area and the other half the basic 

knowledge of Pythagoras‟ theorem for the first learning stage. The learning material 

was developed using a worked example approach, where students were individually 

studying by examples and completing similar problem solving. In the common 

groupings, all students learned both material but the quantity of the practice was a 

half of these in the jigsaw group. In the second learning stage, all students learned a 

more complex material which is the application of the Pythagoras‟ theorem to 

calculate the area of triangle, in groups. The learning material was based on problem 
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solving. In the jigsaw group, students with Pythagoras‟ theorem knowledge base had 

to share with students with the triangle area knowledge base. Without this, they 

would not be able to handle the learning material in the collaborative groups. 

 

Summary 

This chapter described some of the theoretical foundations in support of 

collaborative learning. Many leading educators encourage its use in classrooms, 

although it is acknowledged that the research does not consistently demonstrate its 

effectiveness. Even though, as F. Kirschner et al. (2009a) point out, there is a lack of 

empirical studies supporting group effectiveness on individual learners, collaborative 

learning seems highly appealing. 

Collaborative learning is an example of a social context that is formed in a 

classroom by allocating students to study a learning topic together. Research suggests 

that the effectiveness of working together in a group occurs under certain conditions, 

such as when group members show mutual support by elaborating explanations. 

Further, it is suggested that teachers or instructors play an important role in preparing 

suitable group compositions. In addition to this, providing complex problem solving 

is necessary for encouraging positive interdependence as well as reducing the 

negative effect of working in groups, such as the social loafing effect. 
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From a cognitive load theory perspective, social interaction is also seen as a 

possible context to specifically learn complex tasks, as found in many mathematics 

topics, which an individual would find difficult to learn alone because of a limited 

working memory capacity. By working in groups working memory load can be offset 

by sharing the task. The collective working memory effect occurs when a student 

performs better after learning in a collaborative context rather than learning 

individually. The main evidence for this effect has been found when members are 

required to share discrete sections of information and combine them to accomplish 

the group task. More importantly, the collective working memory effect has been 

shown to be effective when complex problem solving is used. 
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