

DEPARTEMEN PENDIDIKAN NASIONAL UNIVERSITAS NEGERI YOGYAKARTA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM Alamat: Karangmalang, Yogyakarta – 55281 Telepon: 0274 – 586168 Psw. 217

Lampiran-1

SYLLABUS

Faculty	:	Mathematics and Natural Sciences
Study Program	:	Mathematics Education
Course name/code	:	Number Theory & MAT312
UOC	:	Theory: 2 uoc ; Practicum: 0 uoc
Semester	:	2
Required course name/code	:	Logic and Sets & MAT302
Lecturer	:	Endah Retnowati, M.Ed.

I. Description of the course

This course contains properties of integer including divisibility, number representation, prime number, Greatest Common Factor (GCD), Lowest Common Multiple (LCM), congruences and its application, arithmetic theorems, primitive roots and indices.

II. Standard of Competence

Students have skills and understanding of concepts and properties of integer and able to solve proof and application problems.

III. Lecture Strategy

- ✓ Discussion
- ✓ Tutorial
- ✓ Individual assignments
- ✓ Group assignments

IV. Lecture Planning

Meeting	Standar of Competency		Indicator	Main Material	Lecture Strategy	Reference
1	Understand of principle of mathematical induction and binomial theorem and related theorems and apply these to problem solving	a.	Performing proof of mathematical statements using principal of induction	Principle of mathematical induction	Discussion Tutorial	A: 3 - 17
2		b. с.	Applying binomial theorem to determine coefficients within raised two-term algebraic forms Performing proof of mathematical statements	Binomial Theorem	Discussion Tutorial	A: 18 – 31
			using binomial theorem			
3	Explaining divisibility, GCD and LCM and calculating GCD and LCM of integers	a.	Using divisibility to solve problems	Divisibility	Discussion Tutorial	A: 33 – 37

4			b. Detemining GCD		GCD		Discussion Tutorial		A: 38 – 49	
5			c. Determining LCM			LCM		Discussion Tutorial		A: 49 – 54
6	Representing integer on its basis used in system of position and canonic form		a. b.	 a. Changing representation of an integer on particular basis b. Determining results of operations of integers with non-decimal basis 		Numerical r Basis		Discussion Tutorial	1	A: 55 – 68
7	Understanding prime numbers and unique factorization		a. Testing prime number b. Determining prime factors and applying i problem solving		r n	Prime factorisation		Discussion Tutorial		A: 69 – 86
8	Explaining congruence concept and applying th concept to linier congruency, Diophantin equation and related problems	ne	a. Explain definition an properties of congrue and implement these problem solving and Diophantine equation		d nces to	Congruences		Discussion Tutorial		A: 87 – 123
9			b. Solving linier congruences and linier congruence systems		er	Linier Congruenc System	e	Discussion Tutorial	1	A: 123 – 135
10				Mid-Exa	ım					
11	Explaining fermat's theorem, wilson's theorem and apply to problem solving	a. b.	Performing proof of fermat's theorem and apply the theorem in problem solving Performing proof of wilson's theorem and apply the theorem in problem solving Testing prime numbers using these theorems		Ferr theo Wils theo	mat's Dis orem Tut son's orem		cussion orial	A	: 136 – 153
12	Explaining arithmetic functions and solve these to solve problems	a. b.	Giving example of τ (tau) function and applying the theorem in problem solving Giving example of σ (sigma) function and applying the theorem in problem solving		Arit fuct	hmetic ions	Discussion Tutorial		Α	: 154 – 169
13		c. d.	Giving example of Mobius (μ = mu) and applying the theorem in problem solving Giving example of greatest integer function and applying the theorem in problem solving		Arit func	hmetic Discus		cussion orial	A	: 169 – 184
14	Explain phi function and Euler theorem and apply in problem solving	a. b.	 Solving problems related to phi function Prove Euler function and apply the theorem in problem solving 		Phi	Function	Dis Tut	cussion orial	А	: 185 – 206

15	Determine primitive root and index and apply in problem solving	a. Determine order of an integer modulo mb. Solving problems related to primitive roots	Primitive roots	Discussion Tutorial	A: 207 – 227
16		c. Determine indices of integers and solve related problems	Indices	Discussion Tutorial	A: 228 – 237

IV. References

А.	Compulsary Sukirman, 2001. <i>Teori Bilangan</i> . Yogyakarta: FMIPA Universitas Negeri Yogyakarta
B.	Recommended

Mollin, Richard A. 1998. Fundamental Number Theory with Applications. Washington: CRC Press.

V. Evaluation

No	Component	Weight (%)
1	In Class Participation	30%
2	Assignment	30%
3	Mid Exam	20%
4	Final Exam	20%
	Total	100%

Yogyakarta, 15 Agustus 2009 Lecturer,

Endah Retnowati, M.Ed. NIP. 19801228 200212 2 003