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The General Second-Order System

e Two 1important quantities that describes the
response of second order systems:

O Natural frequency, w,: The frequency of

L
oscillation of the system without damping.

O Damping ratio, ¢ : Parameter that describes

the damped oscillations of the 2™ order
response.  Bigger, means more ‘damped’
response, i.e. less oscillations.

Exponential decay frequency

~ Natural frequency (rad/second)

1 Natural period (seconds)

2z Exponential time sonstant

e Define general 2" order response in terms of @,
and ¢ as:

e Hence the pole is given as:
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e Four time responses based on ¢ :
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Example: Given the transfer function
2
a

L find ¢ and w,.

2 ]

G(s) =
s°+2w,s + w,

Example: Find the value of £, and sketch the
kind of response expected.

R(s) 12 C(s) R(s) 16 C(s)
s2+8s+12 s2+8s+16
(@) )]
R(s) 20 C(s)
s2+8s+20
(c)
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Underdamped Second-Order Systems

e A common model for physical problems.

e A detailed description of the underdamped
response is necessary for both analysis and design.

2
@

Clo)=—+57 2

s(s” +28w,s +w,”)
:K1+ ] K2S+K3 -, §<1

s sT+28w,s+ o,

2
(+éop)+ s onl=¢

s (s+lw)Pra1- 0

e Taking the inverse Laplace transform,

c(t)—l—egw”{cosa)n 1-C2t+ 3 sina)n«/l—é’zt)

1-¢7
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e plot of ¢(?)
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e Less ¢ implies more oscillation.
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Second order underdamped response
specifications

()
A
Cmax -
1‘02Cﬁnal
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e Peak time, T,: The time required to reach the first,
or maximum, peak.
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e Percent overshoot, %0OS: The amount that the
response overshoots the final value at the peak
time, expressed as a percentage of the steady-state
value.

e We can also find the inverse of the equation
allowing us to find £ given %O0OS.

e Relationship between ¢ and %OS can be used:
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e Rise time, T,: The time required for the response
to go from 0.1 to 0.9 of the final value.

e Relationship between T,w, and  can be used.

Damping |Normalized
i ratio rise time
30r 0.1 1.104
0.2 1.203
? 28 0.3 1.321
g 26 04 1.463
2. .
24k 05 1.638
= 0.6 1.854
E 22r 0.7 2.126
=
Z 20k 0.8 2467
X 0.9 2.883
218
2 16
2

[SER

| ] | | 1 | g
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Damping ratio

=

o Settling time, Ts: The time required for the
response to reach and stays within 2% of the
steady-state value/final value.
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Example:

100
s +15s5+100

Given a transfer function, G(s) = , find

T,, %08, Ts, and T,.
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Relation between T,, %0S, Ts, and T, to
the system poles.

e Consider the pole plot for an underdamped second-
order system:
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e Notice that the distance from the origin to the pole
equals w,.

_gwn —

Wy

® Ccosl =

.

e Before we already defined:

r-— " _r-*

P w, 1—412, é/a)n

ZHI



SEE 2113 KAWALAN: PEMODELAN DAN SIMULASI 4-31

° w; =w,\1-¢ 2 is the imaginary part of the pole,
called the damped frequency of oscillation.

e 7p 1s inversely proportional to the imaginary part of
the pole. = Horizontal lines are lines of constant
peak time.

e T 1is inversely proportional to the magnitude of the
real part of the pole. = Vertical lines are lines of
constant settling time.

e Radial lines are lines of constant . =>Radial lines

are lines of constant %0OS.
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jo

s-plane
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cl(t)
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e Step responses of second order underdamped
systems as pole moves: (a) with constant real part,
(b) with constant imaginary part, (c) with constant

damping ratio.
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Example:

Given the pole plot shown, find ¢, ®,, T,, %0S, and
Ts.
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Example:

For the system shown, find J and D to yield 20%
overshoot and a settling time of 2 seconds for a step
input of torque 7(?).

1(t) 6(1)
ATA a8

K =5 N-m/rad K \ D
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Example:
For the unit step response shown, find the transfer
function of the system.
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