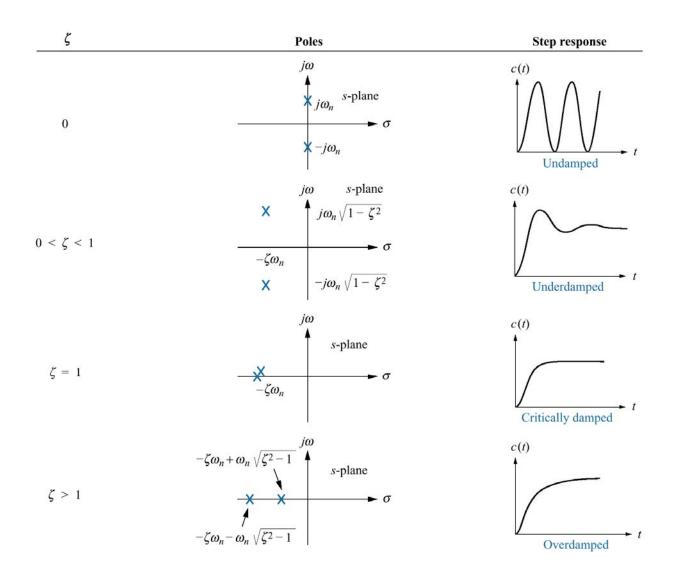
The General Second-Order System

- Two important quantities that describes the response of second order systems:
 - *Natural frequency*, ω_n : The frequency of oscillation of the system without damping.
 - Damping ratio, ζ : Parameter that describes the damped oscillations of the 2nd order response. Bigger, means more 'damped' response, i.e. less oscillations.

 $\zeta = \frac{\text{Exponential decay frequency}}{\text{Natural frequency (rad/second)}}$ $= \frac{1}{2\pi} \frac{\text{Natural period (seconds)}}{\text{Exponential time sonstant}}$

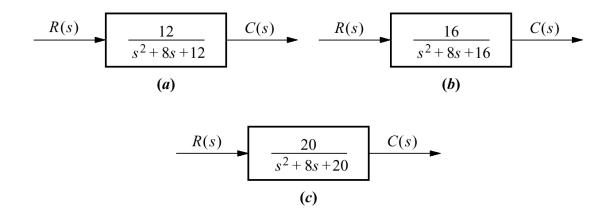
- Define general 2^{nd} order response in terms of ω_n and ζ as:
- Hence the pole is given as:

• Four time responses based on ζ :



Example: Given the transfer function $G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}, \text{ find } \zeta \text{ and } \omega_n.$

Example: Find the value of ζ , and sketch the kind of response expected.



4-23

Underdamped Second-Order Systems

- A common model for physical problems.
- A detailed description of the underdamped response is necessary for both analysis and design.

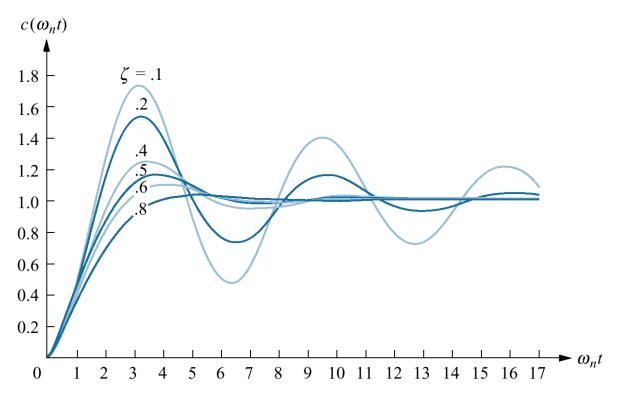
$$C(s) = \frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)}$$

= $\frac{K_1}{s} + \frac{K_2 s + K_3}{s^2 + 2\zeta\omega_n s + \omega_n^2}, \quad \zeta < 1$
= $\frac{1}{s} - \frac{(s + \zeta\omega_n) + \frac{\zeta}{\sqrt{1 - \zeta^2}} \omega_n \sqrt{1 - \zeta^2}}{(s + \zeta\omega_n)^2 + \omega_n^2 \sqrt{1 - \zeta^2}}$

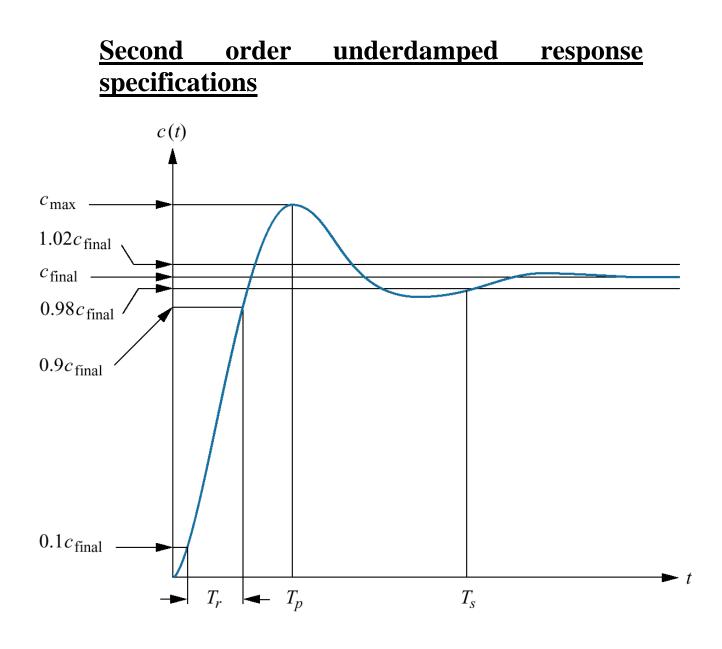
• Taking the inverse Laplace transform,

$$c(t) = 1 - e^{-\zeta \omega_n t} \left(\cos \omega_n \sqrt{1 - \zeta^2} t + \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin \omega_n \sqrt{1 - \zeta^2} t \right)$$

• plot of c(t)



• Less ζ implies more oscillation.

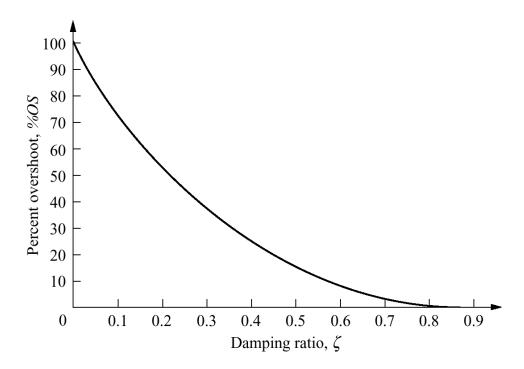


• **Peak time,** T_p : The time required to reach the first, or maximum, peak.

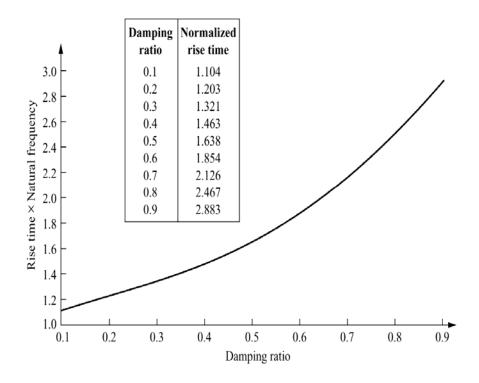
• **Percent overshoot, %OS:** The amount that the response overshoots the final value at the peak time, expressed as a percentage of the steady-state value.

• We can also find the inverse of the equation allowing us to find ζ given %OS.

• Relationship between ζ and %OS can be used:



- Rise time, T_r : The time required for the response to go from 0.1 to 0.9 of the final value.
- Relationship between $T_r \omega_n$ and ζ can be used.

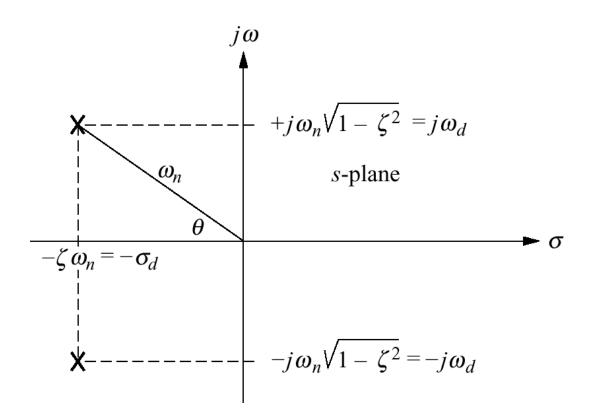


• Settling time, T_s : The time required for the response to reach and stays within $\pm 2\%$ of the steady-state value/final value.

Given a transfer function, $G(s) = \frac{100}{s^2 + 15s + 100}$, find T_p , %OS, T_S , and T_r .

Relation between T_p , %OS, T_S , and T_r to the system poles.

• Consider the pole plot for an underdamped secondorder system:



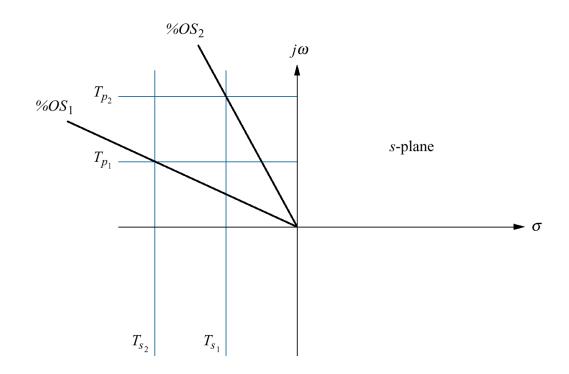
• Notice that the distance from the origin to the pole equals ω_n .

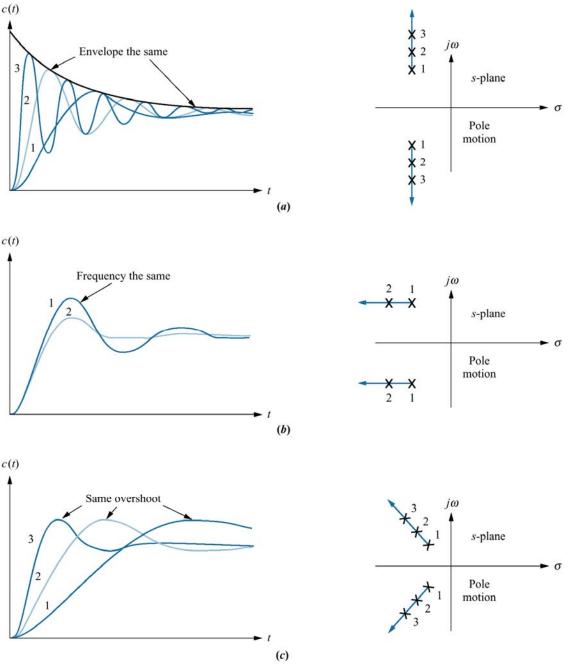
•
$$\cos\theta = \frac{-\zeta\omega_n}{\omega_n} = \zeta$$
.

• Before we already defined:

$$T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}, T_S = \frac{4}{\zeta \omega_n}$$

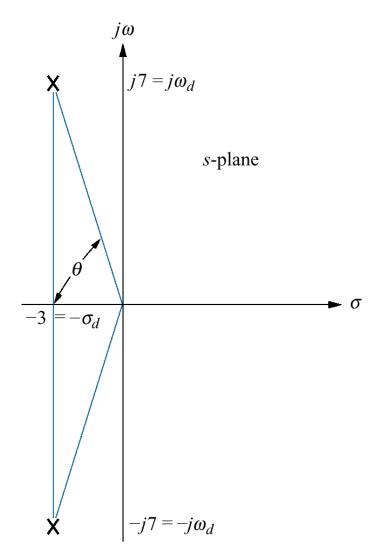
- $\omega_d = \omega_n \sqrt{1 \zeta^2}$ is the imaginary part of the pole, called the *damped frequency of oscillation*.
- T_P is <u>inversely proportional</u> to the imaginary part of the pole. \Rightarrow <u>Horizontal</u> lines are lines of constant peak time.
- T_s is inversely proportional to the magnitude of the real part of the pole. \Rightarrow <u>Vertical</u> lines are lines of constant settling time.
- Radial lines are lines of constant ζ . \Rightarrow Radial lines are lines of constant %OS.



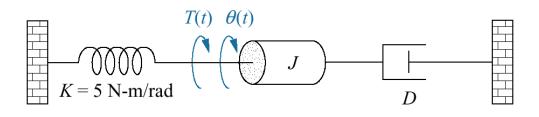


Step responses of second order underdamped systems as pole moves: (a) with constant real part, (b) with constant imaginary part, (c) with constant damping ratio.

Given the pole plot shown, find ζ , ω_n , T_p , %OS, and T_s .



For the system shown, find J and D to yield 20% overshoot and a settling time of 2 seconds for a step input of torque T(t).



For the unit step response shown, find the transfer function of the system.

