Static Error Constants and System Type

- Here we will define parameters that can be used as steady-state error performance specifications for unit negative feedback systems.
- These parameters are called *static error constants*.
- Recall previously that we have found the expressions for e_{ss} for the case of unity feedback systems, namely:

• Step input:

• Ramp input:

• Parabolic input:

• The three terms in the denominator that are taken to the limit determine e_{ss} . These are the static error constants, i.e.:

• Note that the values of e_{ss} decreases as the static error constants increases.

Example:

For each system shown, evaluate the static error constants and find the expected error for the standard step, ramp, and parabolic inputs.

(c)

System type

- As seen in the previous example, the values of static error constants depend on the form of G(s) i.e. they depend on the number of integrations in existing in G(s).
- Hence, define system type to be the value of n in the denominator of G(s).

• The relationship between input, system type, static error constants, and steady state error is summarized in Table 7.2.

Input	Steady-state error formula	Туре О		Type 1		Туре 2	
		Static error constant	Error	Static error constant	Error	Static error constant	Error
Step, $u(t)$	$\frac{1}{1+K_p}$	$K_p =$ Constant	$\frac{1}{1+K_p}$	$K_p = \infty$	0	$K_p = \infty$	0
Ramp, $tu(t)$	$\frac{1}{K_v}$	$K_v = 0$	∞	$K_v =$ Constant	$\frac{1}{K_v}$	$K_v = \infty$	0
Parabola, $\frac{1}{2}t^2u(t)$	$\frac{1}{K_a}$	$K_a = 0$	∞	$K_a = 0$	œ	$K_a =$ Constant	$\frac{1}{K_a}$

Steady state error specifications

- A lot of information is contained within the specification of a static error constant.
- For example, if a control system has the specification $K_v=1000$, we can draw several conclusions:
 - o The system is stable
 - The system is of Type 1, since only Type 1 systems have K_{ν} 's that are finite constants.
 - A ramp input is used as the test signal.
 - e_{ss} between input ramp and output ramp is $\frac{1}{K_v}$.

Example:

Find the value of *K* so that there is 10% error in the steady state.

$$\frac{R(s) + E(s)}{s(s+6)(s+7)(s+8)} \xrightarrow{C(s)} C(s)$$

Steady-state error for Non-unity Feedback Systems

• Example: Find the steady-state errors for the closed-loop system for the unit step, ramp and parabolic inputs where

$$G(s) = \frac{100}{s(s+10)}; H(s) = \frac{1}{s+5}$$

