
Frequency Response Analysis and Design

Tutorial

I. Bode plots [Gain and phase margin | Bandwidth frequency | Closed loop response]

II. The Nyquist diagram [Closed loop stability | Gain margin | Phase margin]

Key MATLAB commands used in these tutorial are bode, nyquist, nyquist1, lnyquist,

margin, lsim, step, and feedback

The frequency response method may be less intuitive than other methods you have studied

previously. However, it has certain advantages, especially in real-life situations such as

modeling transfer functions from physical data.

The frequency response of a system can be viewed two different ways: via the Bode plot

or via the Nyquist diagram. Both methods display the same information; the difference lies

in the way the information is presented. We will study both methods in this tutorial.

The frequency response is a representation of the system's response to sinusoidal inputs at

varying frequencies. The output of a linear system to a sinusoidal input is a sinusoid of the

same frequency but with a different magnitude and phase. The frequency response is

defined as the magnitude and phase differences between the input and output sinusoids. In

this tutorial, we will see how we can use the open-loop frequency response of a system to

predict its behavior in closed-loop.

To plot the frequency response, we create a vector of frequencies (varying between zero or

"DC" and infinity) and compute the value of the plant transfer function at those

frequencies. If G(s) is the open loop transfer function of a system and w is the frequency

vector, we then plot G(j*w) vs. w. Since G(j*w) is a complex number, we can plot both its

magnitude and phase (the Bode plot) or its position in the complex plane (the Nyquist

plot). More information is available on plotting the frequency response.

Bode Plots

As noted above, a Bode plot is the representation of the magnitude and phase of G(j*w)

(where the frequency vector w contains only positive frequencies). To see the Bode plot of

a transfer function, you can use the MATLAB bode command. For example,

CTMS: Frequency Response Tutorial http://www.engin.umich.edu/class/ctms/freq/freq.htm

1 of 13 1/11/2011 5:43 PM

num = 50;
den = [1 9 30 40];
sys = tf(num,den);
bode(sys)

displays the Bode plots for the transfer function:

 50

 s^3 + 9 s^2 + 30 s + 40

Please note the axes of the figure. The frequency is on a logarithmic scale, the phase is

given in degrees, and the magnitude is given as the gain in decibels.

Note: a decibel is defined as 20*log10 (|G(j*w|)

Click here to see a few simple Bode plots.

Gain and Phase Margin

Let's say that we have the following system:

where K is a variable (constant) gain and G(s) is the plant under consideration. The gain

margin is defined as the change in open loop gain required to make the system unstable.

Systems with greater gain margins can withstand greater changes in system parameters

before becoming unstable in closed loop.

CTMS: Frequency Response Tutorial http://www.engin.umich.edu/class/ctms/freq/freq.htm

2 of 13 1/11/2011 5:43 PM

Keep in mind that unity gain in magnitude is equal to a gain of zero in dB.

The phase margin is defined as the change in open loop phase shift required to make a

closed loop system unstable.

The phase margin also measures the system's tolerance to time delay. If there

is a time delay greater than 180/Wpc in the loop (where Wpc is the frequency

where the phase shift is 180 deg), the system will become unstable in closed

loop. The time delay can be thought of as an extra block in the forward path of

the block diagram that adds phase to the system but has no effect the gain.

That is, a time delay can be represented as a block with magnitude of 1 and

phase w*time_delay (in radians/second).

For now, we won't worry about where all this comes from and will concentrate on

identifying the gain and phase margins on a Bode plot.

The phase margin is the difference in phase between the phase curve and -180 deg at the

point corresponding to the frequency that gives us a gain of 0dB (the gain cross over

frequency, Wgc). Likewise, the gain margin is the difference between the magnitude curve

and 0dB at the point corresponding to the frequency that gives us a phase of -180 deg (the

phase cross over frequency, Wpc).

One nice thing about the phase margin is that you don't need to replot the Bode in order to

find the new phase margin when changing the gains. If you recall, adding gain only shifts

the magnitude plot up. This is the equivalent of changing the y-axis on the magnitude plot.

Finding the phase margin is simply the matter of finding the new cross-over frequency and

reading off the phase margin. For example, suppose you entered the command bode(sys).

You will get the following bode plot:

CTMS: Frequency Response Tutorial http://www.engin.umich.edu/class/ctms/freq/freq.htm

3 of 13 1/11/2011 5:43 PM

You should see that the phase margin is about 100 degrees. Now suppose you added a gain

of 100, by entering the command bode(100*sys). You should get the following plot (note

we changed the axis so the scale would be the same as the plot above, your bode plot may

not be exactly the same shape, depending on the scale used):

As you can see the phase plot is exactly the same as before, and the magnitude plot is

shifted up by 40dB (gain of 100). The phase margin is now about -60 degrees. This same

result could be achieved if the y-axis of the magnitude plot was shifted down 40dB. Try

this, look at the first Bode plot, find where the curve crosses the -40dB line, and read off

the phase margin. It should be about -60 degrees, the same as the second Bode plot.

We can find the gain and phase margins for a system directly, by using MATLAB. Just use

the margin command. This command returns the gain and phase margins, the gain and

phase cross over frequencies, and a graphical representation of these on the Bode plot.

Let's check it out:

margin(sys)

CTMS: Frequency Response Tutorial http://www.engin.umich.edu/class/ctms/freq/freq.htm

4 of 13 1/11/2011 5:43 PM

Bandwidth Frequency

The bandwidth frequency is defined as the frequency at which the closed-loop magnitude

response is equal to -3 dB. However, when we design via frequency response, we are

interested in predicting the closed-loop behavior from the open-loop response. Therefore,

we will use a second-order system approximation and say that the bandwidth frequency

equals the frequency at which the open-loop magnitude response is between -6 and -

7.5dB, assuming the open loop phase response is between -135 deg and -225 deg. For a

complete derivation of this approximation, consult your textbook.

If you would like to see how the bandwidth of a system can be found mathematically from

the closed-loop damping ratio and natural frequency, the relevant equations as well as

some plots and MATLAB code are given on our Bandwidth Frequency page.

In order to illustrate the importance of the bandwidth frequency, we will show how the

output changes with different input frequencies. We will find that sinusoidal inputs with

frequency less than Wbw (the bandwidth frequency) are tracked "reasonably well" by the

system. Sinusoidal inputs with frequency greater than Wbw are attenuated (in magnitude)

by a factor of 0.707 or greater (and are also shifted in phase).

Let's say that we have the following closed-loop transfer function representing a system:

1

s^2 + 0.5 s + 1

First of all, let's find the bandwidth frequency by looking at the Bode plot:

CTMS: Frequency Response Tutorial http://www.engin.umich.edu/class/ctms/freq/freq.htm

5 of 13 1/11/2011 5:43 PM

num = 1;
den = [1 0.5 1];
sys = tf(num,den);
bode (sys)

Since this is the closed-loop transfer function, our bandwidth frequency will be the

frequency corresponding to a gain of -3 dB. looking at the plot, we find that it is

approximately 1.4 rad/s. We can also read off the plot that for an input frequency of 0.3

radians, the output sinusoid should have a magnitude about one and the phase should be

shifted by perhaps a few degrees (behind the input). For an input frequency of 3 rad/sec,

the output magnitude should be about -20dB (or 1/10 as large as the input) and the phase

should be nearly -180 (almost exactly out-of-phase). We can use the lsim command to

simulate the response of the system to sinusoidal inputs.

First, consider a sinusoidal input with a frequency lower than Wbw. We must also keep in

mind that we want to view the steady state response. Therefore, we will modify the axes in

order to see the steady state response clearly (ignoring the transient response).

w = 0.3;
num = 1;
den = [1 0.5 1];
sys = tf(num,den);
t = 0:0.1:100;
u = sin(w*t);
[y,t] = lsim(sys,u,t);
plot(t,y,t,u)
axis([50,100,-2,2])

CTMS: Frequency Response Tutorial http://www.engin.umich.edu/class/ctms/freq/freq.htm

6 of 13 1/11/2011 5:43 PM

Note that the output (blue) tracks the input (purple) fairly well; it is perhaps a few degrees

behind the input as expected.

However, if we set the frequency of the input higher than the bandwidth frequency for

the system, we get a very distorted response (with respect to the input):

w = 3;
num = 1;
den = [1 0.5 1];
sys = tf(num,den);
t = 0:0.1:100;
u = sin(w*t);
[y,t] = lsim(sys,u,t);
plot(t,y,t,u)
axis([90, 100, -1, 1])

Again, note that the magnitude is about 1/10 that of the input, as predicted, and that it is

almost exactly out of phase (180 degrees behind) the input. Feel free to experiment and

view the response for several different frequencies w, and see if they match the Bode plot.

Closed-loop performance

In order to predict closed-loop performance from open-loop frequency response, we need

to have several concepts clear:

The system must be stable in open loop if we are going to design via Bode plots.

If the gain cross over frequency is less than the phase cross over frequency (i.e. Wgc

< Wpc), then the closed-loop system will be stable.

For second-order systems, the closed-loop damping ratio is approximately equal to

the phase margin divided by 100 if the phase margin is between 0 and 60 deg. We

can use this concept with caution if the phase margin is greater than 60 deg.

CTMS: Frequency Response Tutorial http://www.engin.umich.edu/class/ctms/freq/freq.htm

7 of 13 1/11/2011 5:43 PM

For second-order systems, a relationship between damping ratio, bandwidth

frequency and settling time is given by an equation described on the bandwidth page.

A very rough estimate that you can use is that the bandwidth is approximately equal

to the natural frequency.

Let's use these concepts to design a controller for the following system:

Where Gc(s) is the controller and G(s) is:

 10

 1.25s + 1

The design must meet the following specifications:

Zero steady state error.

Maximum overshoot must be less than 40%.

Settling time must be less than 2 secs.

There are two ways of solving this problem: one is graphical and the other is numerical.

Within MATLAB, the graphical approach is best, so that is the approach we will use. First,

let's look at the Bode plot. Create an m-file with the following code:

num = 10;
den = [1.25,1];
sys = tf(num,den);
bode(sys)

CTMS: Frequency Response Tutorial http://www.engin.umich.edu/class/ctms/freq/freq.htm

8 of 13 1/11/2011 5:43 PM

There are several several characteristics of the system that can be read directly from this

Bode plot. First of all, we can see that the bandwidth frequency is around 10 rad/sec. Since

the bandwidth frequency is roughly the same as the natural frequency (for a first order

system of this type), the rise time is 1.8/BW=1.8/10=1.8 seconds. This is a rough estimate,

so we will say the rise time is about 2 seconds.

The phase margin for this system is approximately 95 degrees. The relation damping ratio =

pm/100 only holds for PM < 60/ Since the system is first-order, there should be no

overshoot.

The last major point of interest is steady-state error. The steady-state error can be read

directly off the Bode plot as well. The constant (Kp, Kv, or Ka) is found from the

intersection of the low frequency asymptote with the w=1 line. Just extend the low

frequency line to the w=1 line. The magnitude at this point is the constant. Since the Bode

plot of this system is a horizontal line at low frequencies (slope = 0), we know this system

is of type zero. Therefore, the intersection is easy to find. The gain is 20dB (magnitude 10).

What this means is that the constant for the error function it 10. Click here to see the table

of system types and error functions. The steady-state error is 1/(1+Kp)=1/(1+10)=0.091. If

our system was type one instead of type zero, the constant for the steady-state error would

be found in a manner similar to the following

Let's check our predictions by looking at a step response plot. This can be done by adding

the following two lines of code into the MATLAB command window.

sys_cl = feedback(sys,1);
step(sys_cl)

CTMS: Frequency Response Tutorial http://www.engin.umich.edu/class/ctms/freq/freq.htm

9 of 13 1/11/2011 5:43 PM

As you can see, our predictions were very good. The system has a rise time of about 2

seconds, has no overshoot, and has a steady-state error of about 9%. Now we need to

choose a controller that will allow us to meet the design criteria. We choose a PI controller

because it will yield zero steady state error for a step input. Also, the PI controller has a

zero, which we can place. This gives us additional design flexibility to help us meet our

criteria. Recall that a PI controller is given by:

 K*(s+a)
Gc(s) = -------

 s

The first thing we need to find is the damping ratio corresponding to a percent overshoot of

40%. Plugging in this value into the equation relating overshoot and damping ratio (or

consulting a plot of this relation), we find that the damping ratio corresponding to this

overshoot is approximately 0.28. Therefore, our phase margin should be at least 30

degrees. From our Ts*Wbw vs damping ratio plot, we find that Ts*Wbw ~ 21. We must

have a bandwidth frequency greater than or equal to 12 if we want our settling time to be

less than 1.75 seconds which meets the design specs.

Now that we know our desired phase margin and bandwidth frequency, we can start our

design. Remember that we are looking at the open-loop Bode plots. Therefore, our

bandwidth frequency will be the frequency corresponding to a gain of approximately -7

dB.

Let's see how the integrator portion of the PI or affects our response. Change your m-file

to look like the following (this adds an integral term but no proportional term):

num = 10;
den = [1.25 1];
plant = tf(num,den);
numPI = 1;
denPI = [1 0];
contr = tf(numPI,denPI);

CTMS: Frequency Response Tutorial http://www.engin.umich.edu/class/ctms/freq/freq.htm

10 of 13 1/11/2011 5:43 PM

bode(contr * plant, logspace(0,2))

Our phase margin and bandwidth frequency are too small. We will add gain and phase with

a zero. Let's place the zero at 1 for now and see what happens. Change your m-file to look

like the following:

num = 10;
den = [1.25 1];
plant = tf(num,den);
numPI = [1 1];
denPI = [1 0];
contr = tf(numPI,denPI);
bode(contr * plant, logspace(0,2))

It turns out that the zero at 1 with a unit gain gives us a satisfactory answer. Our phase

margin is greater than 60 degrees (even less overshoot than expected) and our bandwidth

CTMS: Frequency Response Tutorial http://www.engin.umich.edu/class/ctms/freq/freq.htm

11 of 13 1/11/2011 5:43 PM

frequency is approximately 11 rad/s, which will give us a satisfactory response. Although

satisfactory, the response is not quite as good as we would like. Therefore, let's try to get a

higher bandwidth frequency without changing the phase margin too much. Let's try to

increase the gain to 5 and see what happens. This will make the gain shift and the phase

will remain the same.

num = 10;
den = [1.25 1];
plant = tf(num,den);
numPI = 5*[1 1];
denPI = [1 0];
contr = tf(numPI,denPI);
bode(contr * plant, logspace(0,2))

That looks really good. Let's look at our step response and verify our results. Add the

following two lines to your m-file:

sys_cl = feedback(contr * plant,1);
step(sys_cl)

As you can see, our response is better than we had hoped for. However, we are not always

quite as lucky and usually have to play around with the gain and the position of the poles

and/or zeros in order to achieve our design requirements.

CTMS: Frequency Response Tutorial http://www.engin.umich.edu/class/ctms/freq/freq.htm

12 of 13 1/11/2011 5:43 PM

This tutorial is continued on the Nyquist page.

Frequency Response II: The Nyquist Diagram

Frequency response Examples
Cruise Control | Motor Speed | Motor Position | Bus Suspension | Inverted Pendulum

| Pitch Controller | Ball and Beam

Tutorials
MATLAB Basics | MATLAB Modeling | PID Control | Root Locus | Frequency

Response | State Space | Digital Control | Simulink Basics | Simulink Modeling |

Examples

CTMS: Frequency Response Tutorial http://www.engin.umich.edu/class/ctms/freq/freq.htm

13 of 13 1/11/2011 5:43 PM

