Subject Matter	: Analytical Mechanics	
Code/Credit	: FIS 316/3	
Prerequisite	: Mechanics	
Competences	: After completing this course, student should have ability and be able to understand, analyze and to achieve concepts of analytical mechanics in daily activities.	
Description	: This course will give fundamental concepts system particles, plane motion and space motion of rigid bodies, non-inertial coordinate systems, Lagranges' equation and Hamiltonian Theory.	

References:

Arya, A. 1990. An Introduction: Classical Mechanics. Allyn and Bacon: USA

Spiegel, Murray R.1983. Theory and Problems of Theoretical Mechanics, Schaum's Outline Series. McGraw-Hill International Book Co.: Singapore.

Fowless, GR. 1998. Analytical Mechanics. Saunders College Publishing: New York

Day	Section	Part	Activities
1,2,3,4	Systems of Particles	 a. System of particle and center of mass b. Motion of center of mass c. Motion of system with variable mass d. Conservation of momentum e. Angular momentum of a system particle f. An elastic and non elastic collision g. Oblique collision and scattering center of mass coordinates 	Discussion, assignments and test
5,6,7	Plane motion of rigid bodies	 a. Rigid bodies b. Center of mass of rigid bodies c. Motion of rigid bodies about a fixed axis d. Moment of inertia e. Parallel axis theorem 	Discussion, assignments and test

Learning Activities

		f. Perpendicular axis theorem		
		g. Pendulum		
8	Midterm 1 test	t i		
9,10,11	Space motion of	a. Angular momentum	Discussion,	
	rigid bodies	b. Tensor inertia	assignments and	
		c. Moment of inertia	test	
		d. Product of inertia		
		e. Euler's equation		
12,13,14	Non inertial	a. Non-inertial coordinate	Discussion,	
	coordinate system	system	assignments and	
		b. Translation coordinate	test	
		system		
		c. Rotating coordinate systems		
		d. Motion of a particle relative		
		to the earth		
		e. Foucault pendulum		
15,16	Lagrangian and	a. Generalized coordinates	Discussion,	
	Hamiltonian	b. Lagranges' equation for a	assignments and	
		single particle	test	
		c. Lagrange's equation for		
		system of particle		
		d. Hamiltonian methods		

Evaluation:

Components	Portion (%)
Assignments	20%
Attendance	10%
Participation	20%
Midterm examination	25%
Final Examination	25%