Subject Matter	: Geometrical and Physical Optics	
Code/Credit	: FIS 318/3	
Prerequisite	: Vibration and wave	
Competences	: After completing this course, student should have ability and be able to understand, analyze and to achieve concepts of geometrical and physical optics in daily activities.	
Description	: This course will give fundamental concepts about nature of light, geometrical optics (reflection, refraction, thin and cylindrical lens) and physical optics (interference, diffraction and polarization of light).	

References:

Pedrotti, Frank L., Pedrotti, Leno M., and Pedrotti, Leno S. 2007. *Introduction to Optics 3rd edition*. Pearson Addison Willet: USA

Akira Hirose, 1985. The Wave Phenimena. John Willey and Sons.

Boas L May, 1983. *Mathematical Methods in The Physical Sciences*. New York : John Willey and Sons.

Jenkins/White, 1985. Fundamental of Optics. Tokyo : Mc Graw Hill Company

M. O. Chia 1996. Gelombang . Bandung : FMIPA ITB

Sahara Muslim 2002. Gelombang dan Optik. Yogyakarta DIKTI FMIPA UGM

Tofik M. 2004. Gelombang dan Optik : Bandung: FMIPA UPI JICA

Learning Activities

Day	Section	Part	Activities
1,2	Introduction	 a. Nature of light b. Brief history of light c. Particles and photons d. The Electromagnetic spectrum 	Discussion, assignments and test
3,4	Law of reflection	a. Law of reflection b. Snell's Law c. Huygen's principle d. Fermat's principle	Discussion, assignments and test
5	Reflection	a. Reflection in plane mirrors b. Reflection at a spherical surface	Discussion, assignments and test

6,7	Refraction	a. Refraction through plane	Discussion,	
		surfaces	assignments	and
		b. Refraction at a spherical	test	
		surface		
8	Midtest			
9	Thin Lenses	a. Introduction to thin lenses	Discussion,	
		b. Newtonian equation for the	assignments	and
		thin lenses	test	
10	Cylindrical lenses	a. Concave cylindrical lenses	Discussion,	
		b. Convex cylindrical lenses	assignments	and
			test	
11,12	Interference of	a. Two-beam interference	Discussion,	
	light	b. Newtons' Rings	assignments	and
			test	
13	Diffraction	a. Fraunhofer diffraction	Discussion,	
		b. The Diffraction grating	assignments	and
		c. Fresnel diffraction	test	
14,15	Polarization	a. Mathematical	Discussion,	
		representation of polarized	assignments	and
		light	test	
		b. Polarization by selective		
		absorption		
		c. Polarization by scattering		
		d. Double refraction		
16	Optical	a. Eyes	Discussion,	
	Instrumentation	b. Prisms	assignments	and
		c. The Camera	test	
		d. Microscope		
		e. Telescope		

Evaluation:

Components	Portion (%)
Assignments	20%
Attendance	10%
Participation	20%
Midterm examination	25%
Final Examination	25%