ZENER DIODES

Analog Electronics

Pujianto

Department of Physics Edu. State University of Yogyakarta

In the breakdown region, large change in diode current produce only small changes in diode voltage.

So a semiconductor P-N junction diode designed to operate in the breakdown, region may be employed as a constant voltage device.

The diode used in such a manner are called Zener diodes. It is used in the reverse-biased condition.

These diodes are used as a voltage regulator.

Zener Diode Specifications

Zener Voltage

The manufacturers specify the value of breakdown voltage known as zener voltage, $\mathbf{V}_{\mathbf{z}}$.
Value of $\mathbf{V}_{\mathbf{z}}$ are available at various valus from 2.4 to 200 V with accuracies between 5 and 10%, depending upon cost.
Power Dissipation
Power dissipation in the diode is the product of Vz and reverse current Iz . The maximum power ratings ranging from 150 mW to 50 W

Breakover Current

It is a current $\left(\mathrm{I}_{\mathrm{zk}}\right)$ which flows at low values of I_{z}. It may be specified some value of current, in the neighborhood of the breakover knee, where the voltage across the diode starts to differ greatly from V_{z}.

Dynamic Impedance

Zener dynamic impedance is defined as Z_{z} :

$$
z_{z}=\frac{\Delta V_{z}}{\Delta I_{z}}
$$

Ideally, $\mathrm{Z}_{\mathbf{z}}$ is zero for a perfectly vertical breakdown curve, but in practice may vary from several ohms to several hundreds ohms, depending upon the particular Zener diode voltage and the operating current.

So, the equation is more useful in the form:

$$
\Delta V_{Z}=Z_{Z} \Delta I_{Z}
$$

THE VOLTAGE REGULATOR CIRCUIT

Under Input Voltage Constant Condition

$$
R_{L \min }=\frac{R_{s} V_{z}}{V_{i}-V_{z}}
$$

$$
R_{L \text { mak }}=\frac{V_{Z}}{I_{L \min }}
$$

$$
I_{L \min }=I_{R S}-I_{Z M}
$$

$$
I_{\text {Lmak }}=\frac{V_{L}}{R_{L \min }}
$$

Under Input Voltage Variation Condition

$$
\begin{aligned}
& I_{\text {Rmak }}=I_{Z M}+I_{L} \\
& V_{\text {imak }}=I_{\text {Rmak }} R_{S}+V_{Z}
\end{aligned}
$$

Exercise 1

Using the following figure, if $R s=1 \mathrm{k} \Omega, \mathrm{Vz}=10$ volt, $\mathrm{I}_{\mathrm{zm}}=32 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{i}}=50$ volt, determine:
a. Ratings ranging of R_{L} and I_{L}
b. Ratings ranging of Power Dissipation

Exercise 2

Using the following figure, if Rs $=220 \Omega, \mathrm{Vz}=20$ volt, $\mathrm{I}_{\mathrm{zm}}=60 \mathrm{~mA}$ and $\mathrm{R}_{\mathrm{L}}=1,2 \mathrm{k} \Omega$ determine ratings ranging of V_{i}

