LESSON PLAN (1-3)

1. Faculty / Study Program	:	FMIPA / Chemistry
2. Course & Code	:	Inorganic Chemistry I, KIM 109
3. Number of SCU (SCU (SKS)	:	Theory : 3 SCU (SKS), Practicum : –
4. Semester and Time	:	Sem :3/5, Time : 3 x 150 minutes
5. Basic Competency	:	

:

5. Basic Competency

Describing the atomic structure: hydrogen atom spectrum, Bohr atomic theory, soft structure theory, Schrödinger wave equation, electronic configuration stability, orbital screening effect, and effective core charge. Element periodic system, element classification and chemical aspect of periodicity.

6. Indicator of achievement

Students are able to:

- explain definition of modern atomic theory. 1.
- 2. explain the Bohr atomic theory, its application and its disadvantage.
- 3. describe the element periodic system, element classification and the chemical aspect of periodicity.
- 7. Main Topics / Segment of Subject :

ATOMIC STRUCTURE:

Hidrogen atom spectrum, Dalton atomic theory, Rutherford atomic Theory, Bohr atomic theory, soft structure theory, Heisenberg uncertainty, Schrödinger wave equation, electronic configuration stability, orbital screening effect, and effective core charge.

PERIODIC ELEMENT SYSTEM:

Periodic Element System, Element Classification and Periodicity properties

:

7. Activity in Class

Componen -	Description of	Estimated	Method	Media	Source
Stage	Activity	Time			Material/reference
Introduction	Syllabus, Basic	15 mins	Class	LCD,	
	Competency, Indicator,		Teaching	Power	
	Learning Contract			points	
Presenting	Atomic Structure:				Textbook
(Main)	- Hidrogen atom spectrum	130 mins			Common
	Bohr atom theory, its				Textbook Kimia
	application and				Anorganik 1
	disadvantage				(KH Sugiyarto)
	- Wavelength mechanics	110 mins			p. 1-36
	atom theory (atomic				
	orbital symmetry <i>s</i> , <i>p</i> , <i>d</i> , <i>f</i>)				
	- Core effective charge	40 mins			
	Periodic Element System:	150 mins			p. 45-50
	- Periodic Element System				

	Element classificationPriodicity properties		
Conluding			
remarks			
Follow-up	Individual learning		

8. Evaluation: Exercises (p.43 and p.66)

Approval

Yogyakarta, 26 October 2013 Lecturer,

Head of Department

Dr. Hari Sutrisno NIP. 19670407 199203 1 002

LESSON PLAN (4-5)

- Faculty / Study Program
 FMIPA / Chemistry
 Course & Code
 Inorganic Chemistry I, KIM 109
 Number of SCU (SKS)
 Theory : 3 SCU (SKS), Practicum : –
- 4. Semester and Time : Sem :3/5, Time : 2 x 150 minutes

:

5. Basic Competency

Describing definition of chemical bonding: the theory and the formation, Valencehybridization bond, VSEPR theory

6. Indicator of achievement

Students are able to:

- 1. explain the chemical bonding, the type of the bonding, bonding formation and chemical structure
- 2. explain about covalent bonding, ionic bonding and its consequences
- 3. identify the chemical bonding type of molecule
- 4. explain the VSEPR theory and its application
- 5. apply the type of chemical bonding to molecular system

:

7. Main Topics / Segment of Subject :

MOLECULAR STRUCTURE

Definition of chemical bonding, covalent bonding, ionic bonding, valence bond theory, hybridization, VSEPR theory

Componen -	Description of	Estimated	Method	Media	Source
Stage	Activity	Time			Material/reference
Introduction	Syllabus, Basic	5-10 mins	Class	LCD,	
	Competency, Indicator		Teaching	Power	
				points	
Presentation	Definition, Chemical				Textbook
(main)	bonding, covalent			LCD,	Common
	bonding, ionic bonding,	150 mins		Power	Textbook Kimia
	valence bond theory,			point	Anorganik 1
	hybridization concept,				(KH Sugiyarto)
	molecular symmetry				p. 67-90
	VSEPR Theory	150 mins			
Concluding					
remark					
Follow-up	Individual learning				

8. Activity in Class

9. Evaluation: Exercises (p.91)

3

Approval Head of Department

Dr. Hari Sutrisno NIP. 19670407 199203 1 002 Yogyakarta, 26 October 2012 Lecturer,

LESSON PLAN (6-8)

- 1. Faculty / Study Program : FMIPA / Chemistry Inorganic Chemistry I, KIM 109
- 2. Course & Code

: 3. Number of SCU (SKS) Theory: 3 SCU (SKS), Practicum : -:

:

- Sem :3/5, Time : 3 x 150 minutes 4. Semester and Time :
- 5. Basic Competency

Describing concept of acid-base: Bronsted-Lowry theory, binnary acid, oxy acid, other acidbase theory

6. Indicator of Achievement

Students are able to

- 1. describe the concept of acid-base
- 2. define the Bronsted-Lowry acid-base strengthness

:

3. explain acid-base theory

ASAM BASA

- 4.1. Pendahuluan, Teori Asam Basa Bronsted Lowry, Tetapan Keseimbangan Asam-Basa
- 4.2. Kekuatan Asam-Basa Bronsted Lowry, Asam-asam Biner, Asam-asam Oksi
- 4.3. Asam-Basa dalam sisitem pelarut, Asam-Basa Lewis, Lux-Flood, Asam-basa Lunak-Keras, dan Superasam
- 7. Main Topics / Segment of Subject :

Concept of acid-base: Bronsted-Lowry theory, binnary acid, oxy acid, Lewis acid-base, Lux-Flood acid-base, Hard-Soft Acid-Base, Superacid

8. Activity in Class

Componen -	Description of	Estimated	Method	Media	Source
Stage	Activity	Time			Material/reference
Introduction	Syllabus, Basic	5-10 mins	Class	LCD,	
	Competency, Indicator		Teaching	Power	
				points	
Presentation	Acid Base Concept	100 mins		LCD,	Textbook:
(Main)	-Bronsted-Lowry Acid-			Power	Common
	Base, Acid-Base			point	Textbook Kimia
	equlibrium constant				Anorganik I (K.
	-binnary acids, oxy acids	100 mins			H. Sugiyarto):
	Bronsted-Lowry base				p. 92-105
	-Acid-base in Solvent	100 mins			
	System, Lewis Acid-				
	base, Lux-Flood Acid-				
	Base, Hard-Soft Acid-				
	Base, Superacid				
Concluding					
Remark					
Follow up	Individual Learning				

9. Evaluation: Exercise (p. 106)

Mid-semester Exam, 120 menit

Approval

Head of Department

Dr. Hari Sutrisno NIP. 19670407 199203 1 002 Yogyakarta, 26 October 2013 Lecturer,

LESSON PLAN (9-10)

1. Faculty / Study Program : FMIPA / Chemistry : Inorganic Chemistry I, KIM 109

:

:

- 2. Course & Code
- : Theory : 3 SCU (SKS), Practicum : 3. Number of SCU (SKS)
 - : Sem : 3/5 , Time : 2 x 150 minutes
- 4. Semester and Time 5. Basic Competency

Describing chemical reaction: non redox and redox reaction

6. Indicator of Achievement

Students are able to,

- describe about nonredox reaction 1.
- 2. explain redox reaction
- 3. indentify chemical reaction
- 7. Main Topics / Segment of Subject :

CHEMICAL REACTION: Nonredox and redox reaction

:

8. Activity in Class

Componen -	Description of	Estimated	Method	Media	Source
Stage	Activity	Time			Material/reference
Introduction	Syllabus, Basic	5-10 mins	Class	LCD,	
	Competency, Indicator		Teaching	Power	
				points	
Presentation	Chemical Reaction:				Textbook:
(Main)	- nonredox reaction	140 mins		LCD,	Common
	- redox reaction, lantiner			Power	Textbook Kimia
	diagram, Frost diagram	150 mins		point	Anorganik I (K.
					H. Sugiyarto):
					p. 107-135
Concluding					
Remarrk					
Follow up	Individual Learning				

9. Evaluation: Exercise (p. 136)

Yogyakarta, 26 October 2013 Lecturer,

Approval

Head of Department

Dr. Hari Sutrisno NIP. 19670407 199203 1 002

LESSON PLAN (11)

- 1. Faculty / Study Program : FMIPA / Chemistry : Inorganic Chemistry I, KIM 109 2. Course & Code
- 3. Number of SCU (SKS) : Theory : 3 SCU (SKS), Practicum : -

:

- 4. Semester and Time : Sem :3/5, Time : 1 x 150 minutes
- 5. Basic Competency

Describing Hydrogen: hydrogen isotope, chemical aspect, bonding on hydrogen, hydrogen properties

6. Indicator of Achievement

Students are able to :

- describe hydrogen properties 1.
- 2. explain hydrogen isotope, chemical aspect, bonding on hydrogen
- 7. Main Topics / Segment of Subject :

HYDROGEN:

Hydrogen isotope, chemical aspect, bonding on hydrogen, hydrate, hydrogen ion, dihydrogen preparation, hydrida, water and hydrogen bonding

8. Activity in Class:

Componen -	Description of	Estimated	Method	Media	Source
Stage	Activity	Time			Material/reference
Introduction	Syllabus, Basic	5-10 mins	Class	LCD,	
	Competency, Indicator		Teaching	Power	
				points	
Lessoning	Hydrogen:				Textbook:
(Main)	- Hydrogen isotope,	70 mins		LCD,	Common
	chemical aspect,			Power	Textbook Kimia
	bonding on hydrogen,			point	Anorganik I (K.
	hydrate				H. Sugiyarto):
	- hydrogen ion,	70 mins		Skeletal	p. 138-152
	dihydrogen preparation,			Models	
	hydrida, water and				
	hydrogen bonding				
Concluding					
Remark					
Follow up	Individual learning				

9. Evaluation: Exercise (p. 153)

Approval

Head of Department

Dr. Hari Sutrisno NIP. 19670407 199203 1 002

Yogyakarta, 26 October 2013 Lecturer,

LESSON PLAN (12-13)

: FMIPA / Chemistry

- 1. Faculty / Study Program
- 2. Course & Code
- : Inorganic Chemistry I, KIM 209

:

:

- 3. Number of SCU (SKS) : Theory : 3 SCU (SKS), Practicum : -
 - : Sem : 3/5 , Time : 2 x 150 minutes
- Semester and Time
 Basic Competency

Describing about properties and preference of boron, carbon and nitrogen

6. Indicator of Achievement

Students are able to:

- 1. explain properties and preference of boron
- 2. explain properties and preference of carbon
- 3. explain properties and preference of nitrogen
- 7. Main Topics / Segment of Subject :

BORON, CARBON, NITROGEN:

Properties and preference, silicone and germanium, phosphor and arcent

8. Activity in Class:

Componen -	Description of	Estimated	Method	Media	Source
Stage	Activity	Time			Material/reference
Introduction	Syllabus, Basic	5-10 mins	Class	LCD,	
	Competency, Indicator		Teaching	Power	
				points	
Presentation	-BORON: properties and	80 mins			Textbook:
(Main)	preferences			LCD,	Common
	-CARBON: properties	100 mins		Power	Textbook Kimia
	and preferences, silicone			point	Anorganik I (K.
	and germanium				H. Sugiyarto):
	-NITROGEN: properties				p. 154-162
	and preference, phosphor				p. 164-188
	and arcent				p. 190-214
Concluding					
Remark					
Follow up	Individual learning				

9. Evaluation: Exercise (p. 163, p. 189, p. 208)

Approval

Head of Department

Dr. Hari Sutrisno NIP. 19670407 199203 1 002 Yogyakarta, 26 October 2013 Lecturer,

LESSON PLAN (14-16)

: FMIPA / Chemistry

- 1. Faculty / Study Program
- 2. Course & Code
- 3. Number of SCU (SKS)

: Inorganic Chemistry I, KIM 209

Theory: 3 SCU (SKS), Practicum: -: Sem :3/5, Time : 3 x 150 minutes

- 4. Semester and Time : :
- 5. Basic Competency

Describing about properties and preference of oxygen, halogen and noble gas

6. Indicator of Achievement

Students are able to:

- 1. explain properties and preference of oxygen
- 2. explain properties and preference of halogen
- 3. explain properties and preference of noble gas
- 7. Main Topics / Segment of Subject :

OXYGEN, HALOGEN, NOBLE GAS

Properties and preference, oxygen anomaly, sulfur, flourine anomaly, flourine, chloride, halyde, halogen oxide, oxyhalogen acid and anion, interhalogen compound and polyhalyde ion, pseudohalogen, xenon flouride, xenon oxide.

Componen -	Description of	Estimated	Method	Media	Source
Stage	Activity	Time			Material/reference
Introduction	Syllabus, Basic	5-10 mins	Class	LCD,	
	Competency, Indicator		Teaching	Power	
				points	
Presentation	-OXYGEN: properties	80 mins			Textbook:
(Main)	and preferences, oxygen			LCD,	Common
	anomaly, sulfur	100 mins		Power	Textbook Kimia
	-HALOGEN: properties			point	Anorganik I (K.
	and preferences, flourine				H. Sugiyarto):
	anomaly, flourine,	120 mins			p. 216-232
	chloride, halyde, halogen				p. 234-255
	oxide, oxyhalogen acid				p. 257-262
	and anion, interhalogen				
	compound and				
	polyhalyde ion,				
	pseudohalogen				
	-NOBLE GAS:				
	properties and				
	preference, xenon				
	flouride, xenon oxide				
Concluding					
Remark					
Follow up	Individual learning				

8. Activity in Class:

9. Evaluation: Exercise (p. 233, p. 256, p. 265) Final Examination 150 min

> Approval Head of Department

Dr. Hari Sutrisno NIP. 19670407 199203 1 002 Yogyakarta, 26 October 2013 Lecturer,